7. Partial Fractions

Goal: To be able to integrate rational functions:

$$
\int \frac{P(x)}{Q(x)} d x
$$

where $P(x)$ and $Q(x)$ are polynomials.

Preliminaries:
Definition: A polynomial is a sum of terms of the form $a x^{n}$ where a is a constant and

$$
n=0,1,2, \ldots .
$$

E.g. $\quad P(x)=7 x^{3}+9 x^{2}+13$

Definition: The degree of a polynomial is the highest power present in its expression.

$$
\text { E.g. } \operatorname{deg}(p)=3 \text { for } p(x) \text { above. }
$$

Definition: we say a polynomial is linear if its degree is 1 . e.g. $p(x)=3 x+7$.

Definition: A quadratic polynomial $a x^{2}+b x+c$ is said to be irreducible if $b^{2}-4 a c<0$.
ie. If it has no real roots.
ie. If it cannot be broken up into linear factors.
Egg. $x^{2}+9, \quad x^{2}-2 x+11$
Remark: It is often useful to complete the square for irreducible quadratics.

Fundamental Theorem of Algebra:
Any polynomial can be factorised into a product of linear terms and irreducible quadratic terms (with some factors possibly repeated).

Example: $\quad x^{3}-1=(x-1)\left(x^{2}+x+1\right)$

Definition: A rational function is a quotient of polynomials: $f(x)=\frac{P(x)}{Q(x)}$ where P and Q are polynomials.
E.g. $\frac{x^{3}+2 x-1}{x^{2}+1}$

Definition: A rational function $\frac{P(x)}{Q(x)}$ is called proper if $\operatorname{deg}(P)<\operatorname{deg}(Q)$.

Remark: Using long division, we car express any rational function as a polynomial t a proper rational function.

$$
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}
$$

where $P, Q, R ; S$ are polynomials with $\operatorname{deg}(R)<\operatorname{deg}(Q)$.

Example: $\frac{x^{3}+2 x-1}{x^{2}+1}$

Cases we car deal with:

Case A. $\int \frac{A}{(a x+b)^{k}} d x$

Examples:
i) $\int \frac{3}{x-5} d x$
ii) $\int \frac{13}{(3 x+11)^{7}} d x$

Remark: We do these with u-sub.

Case $B . \quad \int \frac{A x+B}{\left(a x^{2}+b x+C\right)^{k}} d x$

Examples:
i) $\int \frac{6 x+2}{3 x^{2}+2 x+1} d x$
ii) $\int \frac{3}{x^{2}-2 x+10} d x$
iii) $\int \frac{2 x-3}{x^{2}-4 x+14} d x$

Hint: Rewrite the numerator to break this
into u-sub + trig.

What if it doesn't look like that?

Examples:
i) $\int \frac{1}{x^{2}-25} d x$
ii) $\int \frac{x^{3}-25 x+1}{x^{2}-25} d x$

Method: $\quad \int \frac{P(x)}{Q(x)} d x$
(1) If $\operatorname{deg}(P) \geq \operatorname{deg}(Q)$, use long division to ensure we are integrating a proper rational function.
(2) Factorise the denominator into a product of linear and irreducible quadratic factors.
(3) Use algebra to simplify the rational function into a sum of terns of the form

$$
\frac{A}{(a x+b)^{k}} \quad i \frac{A x+B}{\left(a x^{2}+b x+c\right)^{k}} .
$$

This is called the partial fraction expansion.
(4) Integrate each piece individually.

Remark: Step (3) is where the work lies. We outline the procedure for (3) now:

Case I. $\quad Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{n} x+b_{n}\right)$ where all the factors are distinct. Then:

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{n}}{a_{n} x+b_{n}}
$$

Examples:
i) $\frac{1}{x^{2}-9}$
ii) $\frac{3 x^{2}-12 x+11}{x^{3}-6 x^{2}+11 x-6}$

Case II. $Q(x)=\left(a_{1} x+b_{1}\right)^{\alpha_{1}}\left(a_{2} x+b_{2}\right)^{\alpha_{2}} \cdots\left(a_{n} x+b_{n}\right)^{\alpha_{n}}$
2.e. Q has repeated linear factors. Then, instead of the term $\frac{A_{i}}{a_{i x}+b_{i}}$, we
have: $\frac{A_{i, 1}}{a_{i x}+b_{i}}+\frac{A_{i, 2}}{\left(a_{i x}+b_{i}\right)^{2}}+\cdots+\frac{A_{i, x_{i}}}{\left(a_{i x}+b_{i}\right)^{\alpha_{i}}}$
where each $A_{i, j}$ may be different.
Examples:
i) $\frac{x+1}{x^{2}-4 x+4}$
ii) Write down the form of the expansion of

$$
\frac{x^{4}+2 x^{3}+9 x+1}{(x-1)(x-2)^{3}(x-7)^{2}}
$$

Case III. $Q(x)$ contains irreducible quadratic factors, none of which are repeated. ie. $Q(x)$ has a factor $a x^{2}+b x+c$ where $b^{2}-4 a c<0$. Then the expansion will have a term: $\frac{A x+B}{a x^{2}+b x+c}$.

Example:

$$
\frac{x^{2}+x+8}{(x-1)\left(x^{2}+9\right)}
$$

Case IV. $Q(x)$ contains repeated irreducible quadratic factors: $\left(a x^{2}+b x+c\right)^{k}$.

Similarly to Case II, instead of the single term: $\frac{A x+B}{a x^{2}+b x+c}$, we have

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{k} x+B_{k}}{\left(a x^{2}+b x+c\right)^{k}}
$$

Example:
Write down the form of the expansion

$$
\frac{x^{5}+9 x^{2}+11}{(x-3)\left(x^{2}+2 x+3\right)^{3}}
$$

Summary:

Factor	Contribution
$(a x+b)^{n}$	$\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{n}}{(a x+b)^{n}}$
$\left(a x^{2}+b x+c\right)^{n}$	$\frac{A_{1}+B_{1} x}{a x^{2}+b x+c}+\frac{A_{2}+B_{2} x}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{n}+B_{n} x}{\left(a x^{2}+b x+c\right)^{n}}$
where $a x^{2}+b x+c$ is irreducible.	

Exercises:

1) $\int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x$
2) $\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x$
3) $\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x$
4) $\int \frac{4 x^{2}-3 x+2}{4 x^{2}-4 x+3} d x$
5) $\int \frac{1-x+2 x^{2}-x^{3}}{x\left(x^{2}+1\right)^{2}} d x$
