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Example Find the indefinite integral:

/x3+2x—|—5d:v

Example Find the indefinite integral:

dx
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Example Find the indefinite integral
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Example Find the values of the definite integrals listed below:
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Some common applications of the definite integral are as follows:

o If V(t) is the volume of water that has passed through a pipe at time ¢, then V'(#) is the rate of
flow of water at time ¢ and t
2
/ V'(t)dt
t1

is the volume of water that has passed through the pipe between time ¢; and time 5.

e If the rate of growth of a population is given by P’(¢), then the net change in the population
during the time period from ¢; to t, is given by

/?Pmﬁszg—Pm)

1

e If the cost of producing x units of a commodity is given by C(x) and the marginal cost of producing
x units of a commodity is C’(x), then the increase in cost from raising production levels from z = x;
to x = x5 1S

/md@mxzcgg—cmg

L1

o EX 1f an object is moving along a straight line with position function s(t) and velocity s'(t) = v(t)
then
t2
/'mmu:qm—sm)
(31
is the net change in position or displacement of the object during the time period from t; to ts.

e To calculate the distance that the object above travels during the time period from ¢; to ty, we
must integrate the speed function. The distance travelled by the object during the time period
from t; to ty 1s

t2
/ [v(t)|dt = total distance travelled.

t1



Example A particle moves along a straight line. The velocity at time ¢ is given by the v(t) = t* — 4
m/s.

(a) Find the displacement of the particle during the time period 0 < ¢ < 3.

(b) Find the distance travelled during this time period.

Example Water flows from a tank at the rate of r(¢) = 100 — 2t gallons per minute. How much water
flows from the tank in the first 5 minutes?

Example The acceleration of a particle moving in a straight line is given by a(t) = 2t +1 m/s?. It is
known that the initial velocity of the particle is v(0) = 3, find the velocity on the interval 0 <t < 10
and find the distance travelled in the first 10 minutes.



