〔27. The Indefinite Intergal:

Last time we saw how knowing the artiderivative of a continuous function $f(x)$ allows us to compute the definite integral: $\int_{a}^{b} f(x) d x$.

Recall: If $F$ is an antiderivative of $f$ :

1) $\int f(x) d x=F(x)+C$
2) $F^{\prime}(x)=f(x)$

Remarks:

1) $\int f(x) d x$ is called the indefinite integral or general artiderivative of $f$, and it is a family of functions.
2) $\int_{a}^{b} f(x) d x$ is called the definite integral of $f$ over $[a, b]$, and it is a number.

Below is a list of useful antiderivatives:

$$
\begin{array}{rlrl}
\int c f(x) d x & =c \int f(x) d x & \int[f(x)+g(x)] d x & =\int f(x) d x+\int g(x) d x \\
\int k d x & =k x+C & \int x^{n} d x=\frac{x^{n+1}}{n+1}+C(n \neq-1) \\
\int \sin x d x & =-\cos x+C & \int \cos x d x & =\sin x+C \\
\int \sec ^{2} x d x & =\tan x+C & \int \csc ^{2} x d x & =-\cot x+C \\
\int \sec x \tan x d x & =\sec x+C & \int \csc x \cot x d x & =-\csc x+C
\end{array}
$$

Remark: $1 / x^{n}, n>0$ and $\tan (x)$ are not cts on all of $\mathbb{R}$. For functions which are not continuous everywhere, we can find antiderivatives over intervals where the function is continuous, and represent the autiderivative as a piecewise defined function.

Example:

$$
\int \frac{1}{x^{2}} d x= \begin{cases}\frac{-1}{x}+C_{1}, & \text { for } x<0 \\ \frac{-1}{x}+c_{12}, & \text { for } x>0\end{cases}
$$

Example Find the indefinite integral:

$$
\int x^{3}+2 x+5 d x
$$

Example Find the indefinite integral:

$$
\int \frac{x^{5 / 2}+5 x^{3}+3}{x^{2}} d x
$$

Example Find the indefinite integral

$$
\int \frac{\sin x}{\cos ^{2} x} d x
$$

Example Find the values of the definite integrals listed below:

$$
\int_{1}^{2} x^{3}+2 x+5 d x, \quad \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos ^{2} x} d x, \quad \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x+2 \cos x d x
$$

Interpretation and application of the Definite Integral:
Recall: (F.T.C. - Part 2)

1) $\quad \int_{a}^{b} f(x) d x=F(b)-F(a)$
for $f$ continuous on $[a, b], F$ an artiderivative of $f$.
2) Since $F^{\prime}(x)=f(x)$, we can rewrite this as:

$$
\begin{equation*}
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) \tag{*}
\end{equation*}
$$

Remark: If we consider $F(x)$ as a quantity:

1) $F(b)$ - $F(a)$ is the net change over $[a, b]$.
2) $F^{\prime}(x)$ is the rate of charge.

So, now (*) says:
$\int_{a}^{b}($ rate of charge $) d x=$ net charge between $a$ and $b$

Some common applications of the definite integral are as follows:

- If $V(t)$ is the volume of water that has passed through a pipe at time $t$, then $V^{\prime}(t)$ is the rate of flow of water at time $t$ and

$$
\int_{t_{1}}^{t_{2}} V^{\prime}(t) d t
$$

is the volume of water that has passed through the pipe between time $t_{1}$ and time $t_{2}$.

- If the rate of growth of a population is given by $P^{\prime}(t)$, then the net change in the population during the time period from $t_{1}$ to $t_{2}$ is given by

$$
\int_{t_{1}}^{t_{2}} P^{\prime}(t) d t=P\left(t_{2}\right)-P\left(t_{1}\right)
$$

- If the cost of producing $x$ units of a commodity is given by $C(x)$ and the marginal cost of producing $x$ units of a commodity is $C^{\prime}(x)$, then the increase in cost from raising production levels from $x=x_{1}$ to $x=x_{2}$ is

$$
\int_{x_{1}}^{x_{2}} C^{\prime}(x) d x=C\left(x_{2}\right)-C\left(x_{1}\right)
$$

- If an object is moving along a straight line with position function $s(t)$ and velocity $s^{\prime}(t)=v(t)$ then

$$
\int_{t_{1}}^{t_{2}} v(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right)
$$

is the net change in position or displacement of the object during the time period from $t_{1}$ to $t_{2}$.

- To calculate the distance that the object above travels during the time period from $t_{1}$ to $t_{2}$, we must integrate the speed function. The distance travelled by the object during the time period from $t_{1}$ to $t_{2}$ is

$$
\int_{t_{1}}^{t_{2}}|v(t)| d t=\text { total distance travelled. }
$$

Example A particle moves along a straight line. The velocity at time $t$ is given by the $v(t)=t^{2}-4$ $\mathrm{m} / \mathrm{s}$.
(a) Find the displacement of the particle during the time period $0<t<3$.
(b) Find the distance travelled during this time period.

Example Water flows from a tank at the rate of $r(t)=100-2 t$ gallons per minute. How much water flows from the tank in the first 5 minutes?

Example The acceleration of a particle moving in a straight line is given by $a(t)=2 t+1 \mathrm{~m} / \mathrm{s}^{2}$. It is known that the initial velocity of the particle is $v(0)=3$, find the velocity on the interval $0 \leq t \leq 10$ and find the distance travelled in the first 10 minutes.

