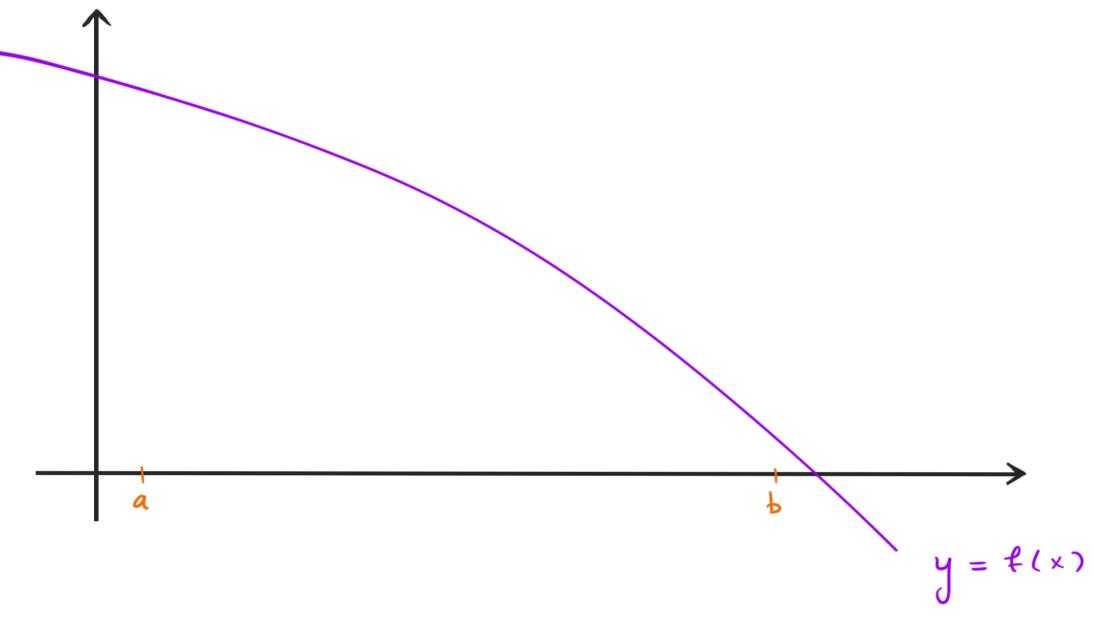
\$ 24. Areas and distances:

Say you want to find the area under a curve y = f(x) between two x-values a and b.

(with f continuous)

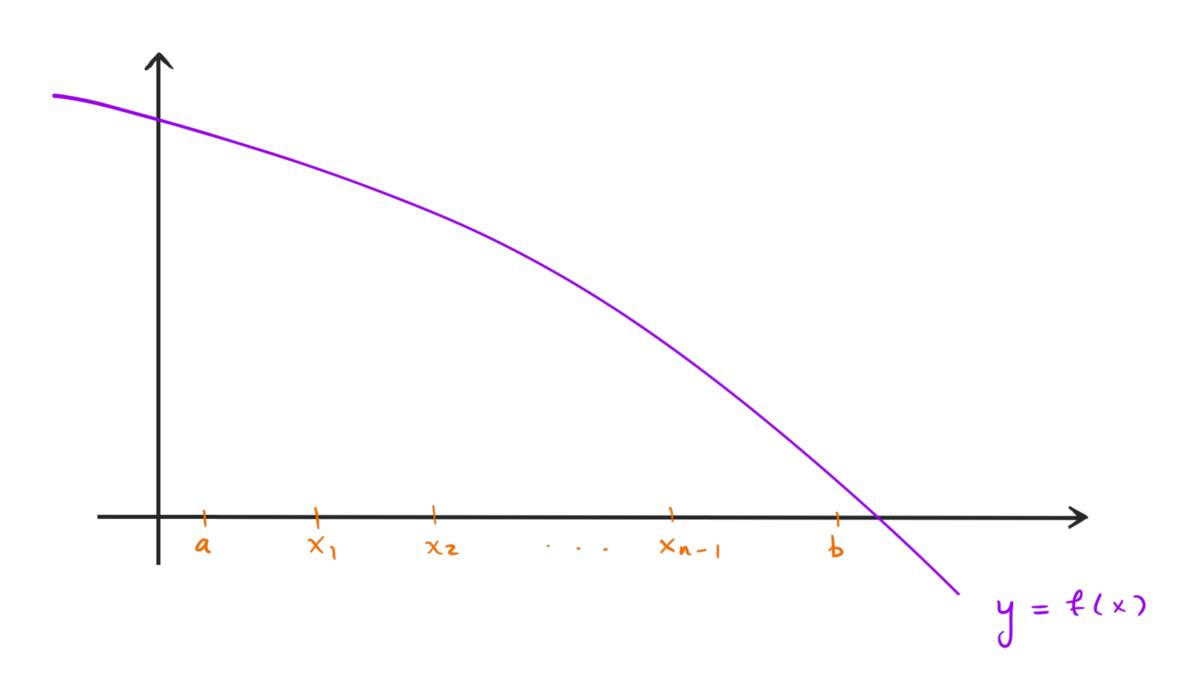


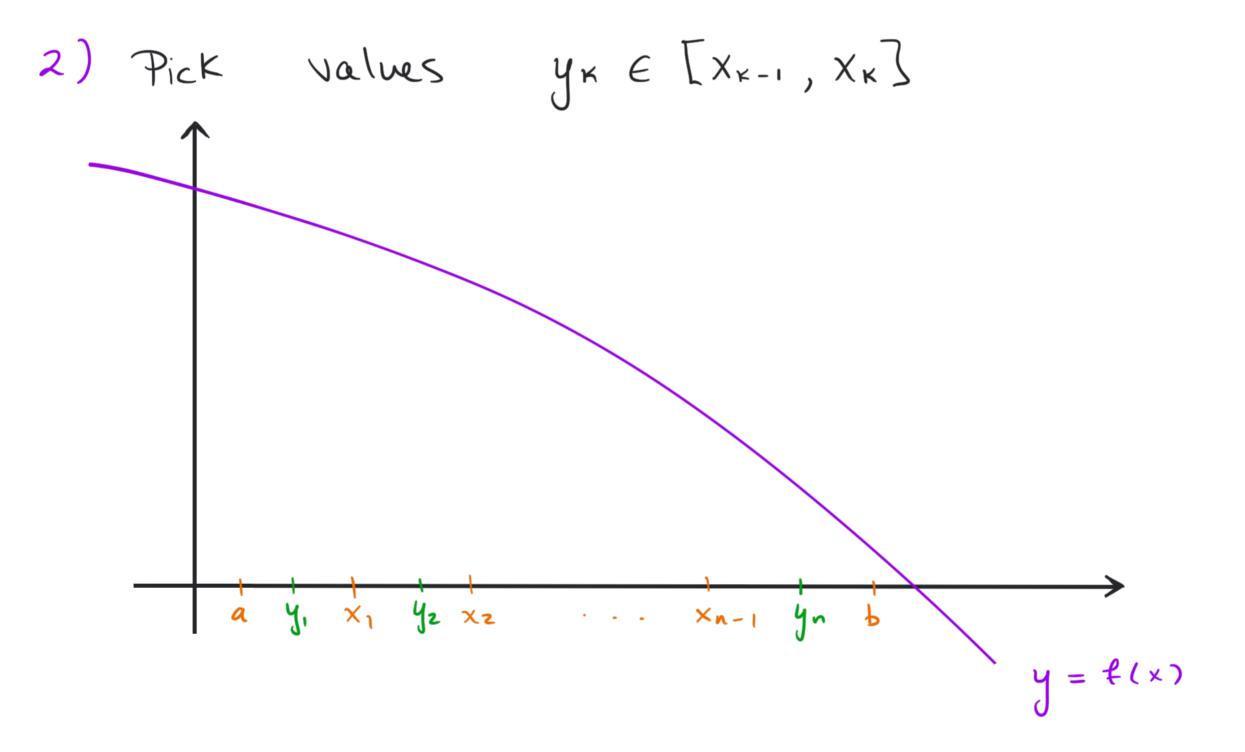
Method:

1) Divide the interval [a,b] into smaller Sub - intervals:

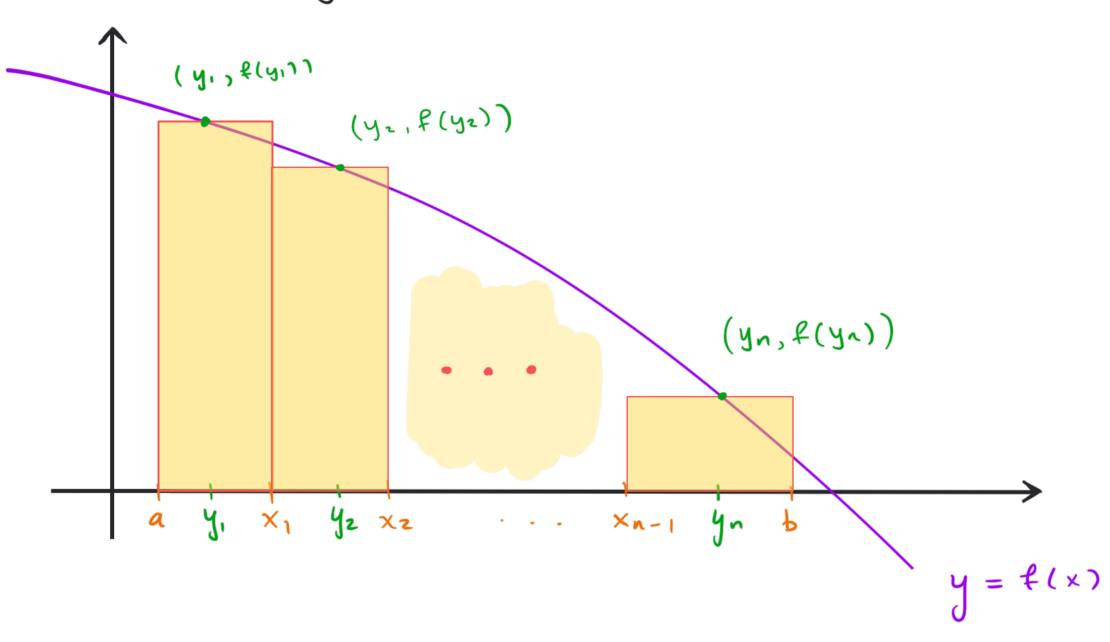
[a, x,] $[x_1, x_2]$ $[x_{n-1}, b]$

for some n.





3) Draw rectangles of width (xx-xx-1) and height f(yx):



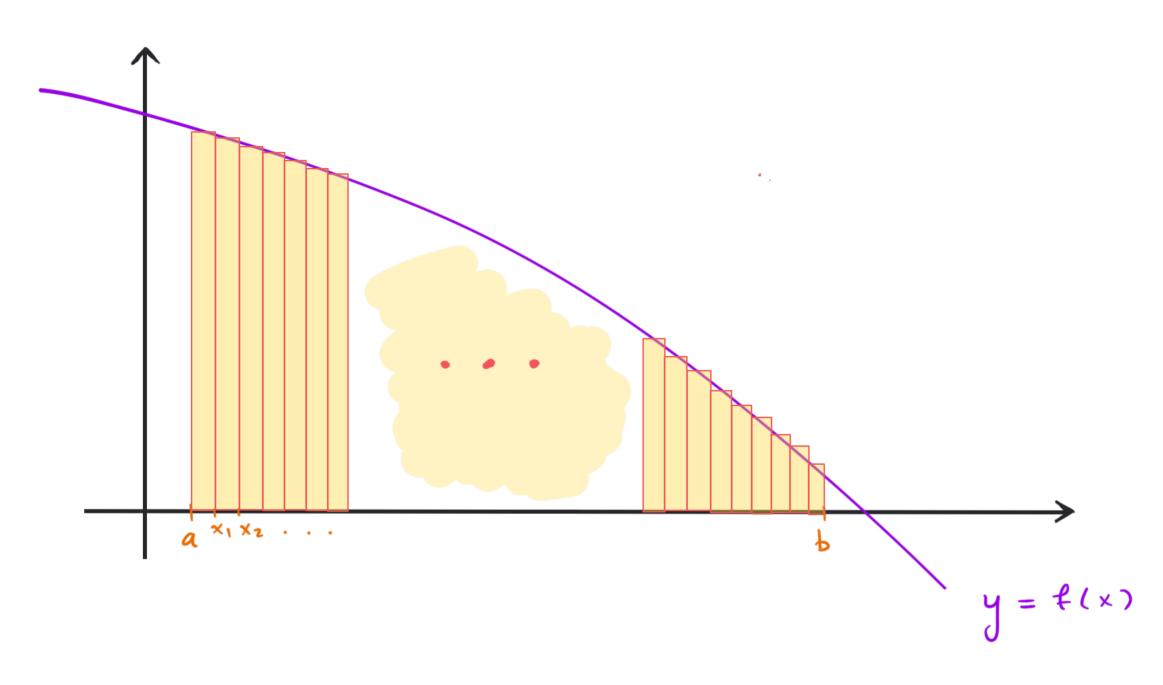
Idea: The sum of all the areas of the rectangles \approx area under the graph between a and b = : A.

i.e. $A \approx (x_1-a)f(y_1) + (x_2-x_1)f(y_2) + \cdots + (b-x_{n-1})f(y_n)$

Question: Can we make this approximation better?

Step 4: Do the process for a larger n.

rie. make the subdivisions finer:



$$A \approx (x_1 - a) f(y_1) + (x_2 - x_1) f(y_2) + ... + (b - x_{n-1}) f(y_n)$$

Step 5: Limit $n \to \infty$ in this process, REQUIRING

that $\Delta x_{K} := (x_{K} - x_{K-1})$, $1 \le K \le n$ (i.e. the "gap size") has $\lim_{n \to \infty} \Delta x_{K} = 0$

i.e. "gap sizes" go to Zero.

Notation:

- I) If all the subintervals are of the same length: $\Delta \times (i.e. \times K \times K I) = \Delta \times for all K)$, then $\Delta \approx \Delta \times f(y_1) + \Delta \times f(y_2) + \dots + \Delta \times f(y_n)$ $= (f(y_1) + f(y_2) + \dots + f(y_n)) \Delta \times$
 - 2) These formulas are shorter using I notation:

$$\mathcal{A} \simeq \sum_{k=1}^{n} (\chi_{k} - \chi_{k-1}) f(y_{k})$$

(with the convertion that x = a, x = b).

$$\mathcal{A} \approx \int_{K=1}^{\infty} f(y_{K}) \Delta \times$$

Remark:
$$\Delta x = \frac{b-a}{n}$$

Definition: Any of these sums $\hat{\sum}_{k=1}^{n} (x_{k-1}) f(y_{k})$

is called a Riemann Sum.

If you have divided [anb] into n intervals, it is called an nthe Riemann Sum, denoted S_n .

Whole point: We can see the "error" decreases as we take finer and finer subdivisions.

Hence:

 $A = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \int_{K=1}^n f(y_K) \Delta x_K$

provided the "gap sizes" -> 0.

Crucial question: Does the way we split up the interval / the yx's we pick affect our answer in the limit?

Answer: No (as long as f is continuous and gap sizes go to zero).

Remark: Sometimes we don't pick our y_{k} 's randomly:

If we make the gap size constant: $\Delta x = \frac{b-a}{n}$, and:

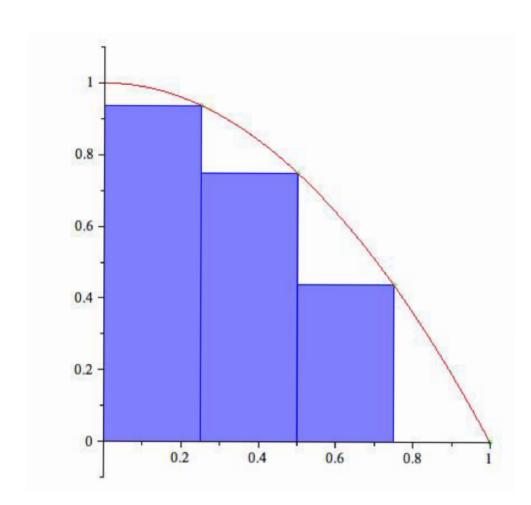
1) If we make $y_{k} = x_{k}$, we call this the

Right endpoint approximation:

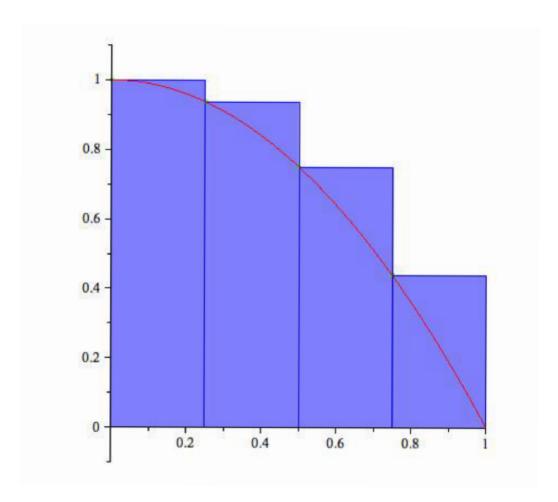
$$R_n := \sum_{k=1}^n f(x_k) \Delta x$$

2) If we make $y_k = x_{k-1}$, we call this the Left endpoint approximation:

$$L_{n} := \int_{\kappa=1}^{n} f(\chi_{\kappa-1}) \Delta x$$



Right endpoint approx.



heft endpoint approx.

Remark:
$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n$$

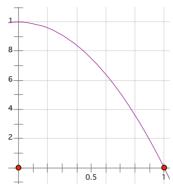
(provided that gap size -> 0).

Calculating Limits of Riemann sums

The following formulas are sometimes useful in calculating Riemann sums. I have attached some visual proofs at the end of the lecture.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \qquad \sum_{i=1}^{n} i^2 = \frac{(2n+1)n(n+1)}{6}, \qquad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Let us now consider **Example 1**. We want to find A = the area under the curve $y = 1 - x^2$ on the interval [a, b] = [0, 1].



We know that $A = \lim_{n\to\infty} R_n$, where R_n is the right endpoint approximation using n approximating rectangles.

We must calculate R_n and than find $\lim_{n\to\infty} R_n$.

1. We divide the interval [0,1] into n strips of equal length $\Delta x = \frac{1-0}{n} = 1/n$. This gives us a partition of the interval [0,1],

$$x_0 = 0$$
, $x_1 = 0 + \Delta x = 1/n$, $x_2 = 0 + 2\Delta x = 2/n$, ..., $x_{n-1} = (n-1)/n$, $x_n = 1$.

- 2. We will use the right endpoint approximation R_n .
- 3. The heights of the rectangles can be found from the table below:

x_i	$x_0 = 0$	$x_1 = 1/n$	$x_2 = 2/n$	$x_3 = 3/n$	 $x_n = n/n$
$f(x_i) = 1 - (x_i)^2$	1	$1 - 1/n^2$	$1 - 2^2/n^2$	$1 - 3^2/n^2$	 $1 - n^2/n^2$

4.

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \dots + f(x_n)\Delta x = \left(1 - \frac{1}{n^2}\right)\frac{1}{n} + \left(1 - \frac{2^2}{n^2}\right)\frac{1}{n} + \left(1 - \frac{3^2}{n^2}\right)\frac{1}{n} + \dots + \left(1 - \frac{n^2}{n^2}\right)\frac{1}{n} = \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{2^2}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{3^2}{n^2}\left(\frac{1}{n}\right) + \dots + \frac{1}{n} - \frac{n^2}{n^2}\left(\frac{1}{n}\right) = \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{2^2}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{3^2}{n^2}\left(\frac{1}{n}\right) + \dots + \frac{1}{n} - \frac{n^2}{n^2}\left(\frac{1}{n}\right) = \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \dots + \frac{1}{n} - \frac{n^2}{n^2}\left(\frac{1}{n}\right) = \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \dots + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) = \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \dots + \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \dots + \frac{1}{n} - \frac$$

5. Finish the calculation above and find $A = \lim_{n\to\infty} R_n$ using the formula for the sum of squares and calculating the limit as if R_n were a rational function with variable n.

Also
$$A = \lim_{n \to \infty} L_n$$

From Part 3, we have $\Delta x = 1/n$ and

$$L_n = \frac{1}{n} + \left(1 - \frac{1}{n^2}\right)\frac{1}{n} + \left(1 - \frac{2^2}{n^2}\right)\frac{1}{n} + \left(1 - \frac{3^2}{n^2}\right)\frac{1}{n} + \dots + \left(1 - \frac{(n-1)^2}{n^2}\right)\frac{1}{n}$$

$$\frac{1}{n} + \frac{1}{n} - \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{2^2}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n} - \frac{3^2}{n^2}\left(\frac{1}{n}\right) + \dots + \frac{1}{n} - \frac{(n-1)^2}{n^2}\left(\frac{1}{n}\right) = \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n^2}\left(\frac{1}{n}\right) + \frac{1}{n^2}\left(\frac{1}{n^2}\right) + \frac{1}{n^2$$

grouping the $\frac{1}{n}$'s together, we get

$$= \frac{n}{n} - \frac{1}{n} \left[\frac{1^2}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{(n-1)^2}{n^2} \right]$$

$$= 1 - \frac{1}{n^3} \left[1^2 + 2^2 + 3^2 + \dots + (n-1)^2 \right]$$

$$= 1 - \frac{1}{n^3} \sum_{i=1}^{n-1} i^2 = 1 - \frac{1}{n^3} \left[\frac{(2(n-1)+1)(n-1)((n-1)+1)}{6} \right]$$

$$= 1 - \frac{1}{n^3} \left[\frac{(2n-1)(n-1)(n)}{6} \right]$$

$$= 1 - \frac{n}{6n^3} (2n-1)(n-1)$$

$$= 1 - \frac{2^n}{6n^2}$$

$$= 1 - \frac{2^n}{6n^2}$$

So

$$\lim_{n \to \infty} L_n = \lim_{n \to \infty} \left[1 - \frac{2n + \text{ smaller powers of } n}{6n^2} \right] = 1 - \frac{2}{6} = 2/3.$$

Riemann Sums in Action: Distance from Velocity/Speed Data

To estimate distance travelled or displacement of an object moving in a straight line over a period of time, from discrete data on the velocity of the object, we use a Riemann Sum. If we have a table of values:

 $time = t_i t_0 = 0 t_1 t_2 \dots t_n$ $velocity = v(t_i) v(t_0) v(t_1) v(t_2) \dots v(t_n)$

where $\Delta t = t_i - t_{i-1}$, then we can approximate the displacement on the interval $[t_{i-1}, t_i]$ by $v(t_{i-1}) \times \Delta t$ or $v(t_i) \times \Delta t$. Therefore the total displacement of the object over the time interval $[0, t_n]$ can be approximated by

Displacement
$$\approx v(t_0)\Delta t + v(t_1)\Delta t + \cdots + v(t_{n-1})\Delta t$$
 Left endpoint approximation

or

Displacement
$$\approx v(t_1)\Delta t + v(t_2)\Delta t + \cdots + v(t_n)\Delta t$$
 Right endpoint approximation

These are obviously Riemann sums related to the function v(t), hinting that there is a connection between the area under a curve (such as velocity) and its antiderivative (displacement). This is indeed the case as we will see later.

When we use speed = |velocity| instead of velocity. the above formulas translate to

Distance Travelled
$$\approx |v(t_0)|\Delta t + |v(t_1)|\Delta t + \cdots + |v(t_{n-1})|\Delta t$$

and

Distance Travelled
$$\approx |v(t_1)|\Delta t + |v(t_2)|\Delta t + \cdots + |v(t_n)|\Delta t$$

Example The following data shows the speed of a particle every 5 seconds over a period of 30 seconds. Give the left endpoint estimate for the distance travelled by the particle over the 30 second period.

time in $s = t_i$							30
velocity in $m/s = v(t_i)$	50	60	65	62	60	55	50

$$L = |v(t_0)|\Delta t + |v(t_1)\Delta t + \dots + |v(t_6)|\Delta t$$

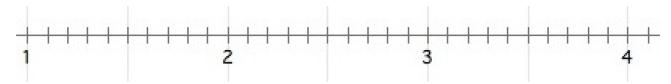
= 50(5) + 60(5) + 65(5) + 62(5) + 60(5) + 55(5)
= 5[50 + 60 + 65 + 62 + 60 + 55] = 1760m.

The above sum is a Riemann sum, telling us that the distance travelled is approximately the area under the (absolute vale of velocity) curve.... hmmmmm interesting...... remember speed = |v(t)| = derivative of distance travelled.

Extra Example Estimate the area under the graph of f(x) = 1/x from x = 1 to x = 4 using six approximating rectangles and

$$\Delta x = \frac{b-a}{n} =$$
______, where $[a, b] = [1, 4]$ and $n = 6$.

 $\Delta x = \frac{b-a}{n} = \underline{\hspace{1cm}}$, where [a,b] = [1,4] and n=6. Mark the points $x_0, x_1, x_2, \ldots, x_6$ which divide the interval [1,4] into six subintervals of equal length on the following axis:



Fill in the following tables:

x_i	$x_0 =$	$x_1 =$	$x_2 =$	$x_3 =$	$x_4 =$	$x_5 =$	$x_6 =$
$\int f(x_i) = 1/x_i$							

(a) Find the corresponding right endpoint approximation to the area under the curve y = 1/x on the interval [1, 4].

$$R_6 =$$

(b) Find the corresponding left endpoint approximation to the area under the curve y = 1/x on the interval [1, 4].

$$L_6 =$$

(c) Fill in the values of f(x) at the midpoints of the subintervals below:

$\boxed{\text{midpoint} = x_i^m}$	$x_1^m =$	$x_2^m =$	$x_3^m =$	$x_4^m =$	$x_5^m =$	$x_6^m =$
$f(x_i^m) = 1/x_i^m$						

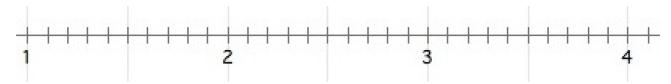
Find the corresponding midpoint approximation to the area under the curve y = 1/x on the interval [1, 4].

$$M_6 =$$

Extra Example Estimate the area under the graph of f(x) = 1/x from x = 1 to x = 4 using six approximating rectangles and

$$\Delta x = \frac{b-a}{n} = \frac{4-1}{6} = \frac{1}{2}$$
, where $[a, b] = [1, 4]$ and $n = 6$.

Mark the points $x_0, x_1, x_2, \ldots, x_6$ which divide the interval [1, 4] into six subintervals of equal length on the following axis:



Fill in the following tables:

x_i	$x_0 = 1$	$x_1 = 3/2$	$x_2 = 2$	$x_3 = 5/2$	$x_4 = 3$	$x_5 = 7/2$	$x_6 = 4$
$f(x_i) = 1/x_i$	1	2/3	1/2	2/5	1/5	2/7	1/4

(a) Find the corresponding right endpoint approximation to the area under the curve y = 1/x on the interval [1, 4].

$$R_6 = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x + f(x_5)\Delta x + f(x_6)\Delta x$$

$$= \frac{2}{3} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} + \frac{2}{7} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2}$$

$$= \frac{2}{6} + \frac{1}{4} + \frac{2}{10} + \frac{1}{6} + \frac{2}{14} + \frac{1}{8} = 1.217857$$

(b) Find the corresponding left endpoint approximation to the area under the curve y = 1/x on the interval [1, 4].

$$L_6 = f(x_0)\Delta x + f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x + f(x_5)\Delta x$$

$$= 1 \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} + \frac{2}{7} \cdot \frac{1}{2}$$

$$= \frac{1}{2} + \frac{2}{6} + \frac{1}{4} + \frac{2}{10} + \frac{1}{6} + \frac{2}{14} = 1.59285$$

(c) Fill in the values of f(x) at the midpoints of the subintervals below:

$midpoint = x_i^m$	$x_1^m = 5/4$	$x_2^m = 7/4$	$x_3^m = 9/4$	$x_4^m = 11/4$	$x_5^m = 13/4$	$x_6^m = 15/4$
$f(x_i^m) = 1/x_i^m$	4/5	4/7	4/9	4/11	4/13	4/15

Find the corresponding midpoint approximation to the area under the curve y = 1/x on the interval [1,4].

$$M_6 = \sum_{i=1}^{6} f(x_i^*) \Delta x$$

$$= \frac{4}{5} \cdot \frac{1}{2} + \frac{4}{7} \cdot \frac{1}{2} + \frac{4}{9} \cdot \frac{1}{2} + \frac{4}{11} \cdot \frac{1}{2} + \frac{4}{13} \cdot \frac{1}{2} + \frac{4}{15} \cdot \frac{1}{2} = 1.376934$$

Extra Example Find the area under the curve $y = x^3$ on the interval [0,1].

We know that $A = \lim_{n\to\infty} R_n$, where R_n is the right endpoint approximation using n approximating rectangles.

We must calculate R_n and than find $\lim_{n\to\infty} R_n$.

1. We divide the interval [0,1] into n strips of equal length $\Delta x = \frac{1-0}{n} = 1/n$. This gives us a partition of the interval [0,1],

$$x_0 = 0$$
, $x_1 = 0 + \Delta x = 1/n$, $x_2 = 0 + 2\Delta x = 2/n$, ..., $x_{n-1} = (n-1)/n$, $x_n = 1$.

- 2. We will use the right endpoint approximation R_n .
- 3. The heights of the rectangles can be found from the table below:

x_{i}	$x_0 = 0$	$x_1 = 1/n$	$x_2 = 2/n$	$x_3 = 3/n$	 $x_n = n/n$
$f(x_i) = (x_i)^3$	0	$1/n^{3}$	$2^{3}/n^{3}$	$3^3/n^3$	n^3/n^3

4.

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \dots + f(x_n)\Delta x = \left(\frac{1}{n^3}\right)\frac{1}{n} + \left(\frac{2^3}{n^3}\right)\frac{1}{n} + \left(\frac{3^3}{n^3}\right)\frac{1}{n} + \dots + \left(\frac{n^3}{n^3}\right)\frac{1}{n} = \sum_{i=1}^n \frac{i^3}{n^4} = \frac{1}{n^4} \sum_{i=1}^n i^3 = \frac{1}{n^4} \left[\frac{n(n+1)}{2}\right]^2$$

5.

$$A = \lim_{n \to \infty} \frac{1}{n^4} \left[\frac{n(n+1)}{2} \right]^2 = \lim_{n \to \infty} \frac{n^2(n+1)^2}{4n^4} = \lim_{n \to \infty} \frac{(n+1)^2}{4n^2}$$
$$= \lim_{n \to \infty} \frac{1}{4} \cdot \frac{(n+1)}{n} \cdot \frac{(n+1)}{n} = \frac{1}{4}.$$

Extra Example, estimates from data on rate of change The same principle applies to estimating Volume from discrete data on its rate of change:

Oil is leaking from a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour, recorded in the following table.

time in h	0	1	2	3	4	5	6	7	8
leakage in gal/h	50	70	97	136	190	265	369	516	720

The following gives the right endpoint estimate of the amount of oil that has escaped from the tanker after 8 hours:

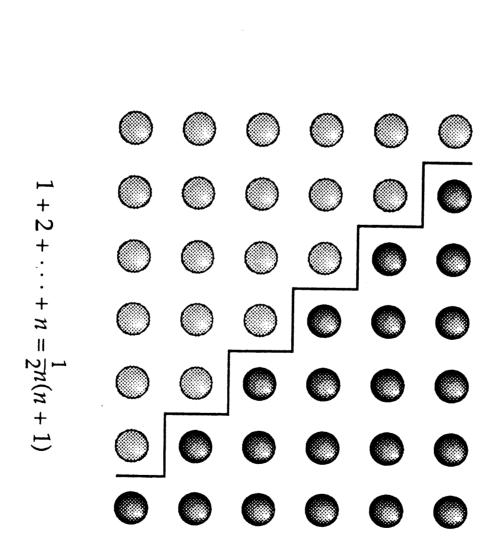
$$R_8 = 70 \cdot 1 + 97 \cdot 1 + 136 \cdot 1 + 190 \cdot 1 + 265 \cdot 1 + 369 \cdot 1 + 516 \cdot 1 + 720 \cdot 1 = 2363$$
 gallons.

The following gives the right endpoint estimate of the amount of oil that has escaped from the tanker after 8 hours:

$$L_8 = 50 \cdot 1 + 70 \cdot 1 + 97 \cdot 1 + 136 \cdot 1 + 190 \cdot 1 + 265 \cdot 1 + 369 \cdot 1 + 516 \cdot 1 = 1693$$
 gallons.

Since the flow of oil seems to be increasing over time, we would expect that $L_8 < \text{true volume leaked} < R_8$ or the true volume leaked in the first 8 hours is somewhere between 1693 and 2363 gallons.

Visual proof of formula for the sum of integers:



Sums of Integers I