§24. Areas and distances:
Say you want to find the area under a curve $y=f(x)$ between two x-values a and b. (with f continuous)

Method:

1) Divide the interval $[a, b]$ into smaller sub - intervals

$$
\left[a, x_{1}\right],\left[x_{1}, x_{2}\right], \cdots,\left[x_{n-1}, b\right]
$$

for some n.

2) Pick values $y_{k} \in\left[x_{k-1}, x_{k}\right]$

3) Draw rectangles of width $\left(x_{k}-x_{k-1}\right)$ and height $f\left(y_{k}\right)$:

Idea: The sum of all the areas of the rectangles \approx area under the graph between a and $t=A$
i.e. $f \approx\left(x_{1}-a\right) f\left(y_{1}\right)+\left(x_{2}-x_{1}\right) f\left(y_{2}\right)+\cdots+\left(b-x_{n-1}\right) f\left(y_{n}\right)$

Question: Can we make this approximation better?

Step 4: Do the process for a larger n. ie. make the subdivisions finer:

$$
\mathcal{A} \approx\left(x_{1}-a\right) f\left(y_{1}\right)+\left(x_{2}-x_{1}\right) f\left(y_{2}\right)+\cdots+\left(b-x_{n-1}\right) f\left(y_{n}\right)
$$

Step 5: Limit $n \rightarrow \infty$ in this process, REQUIRING that $\quad \Delta x_{k}:=\left(x_{k}-x_{k-1}\right), 1 \leq k \leq n$
(ie. the "gap size") has

$$
\lim _{n \rightarrow \infty} \Delta x_{k}=0
$$

ie. "gap sizes" go to zero.

Notation:

1) If all the subintervals are of the same length: Δx (i.e. $x_{k}-x_{k-1}=\Delta x$ for all k), then

$$
\begin{aligned}
A & \approx \Delta \times f\left(y_{1}\right)+\Delta \times f\left(y_{2}\right)+\cdots+\Delta \times f\left(y_{n}\right) \\
& =\left(f\left(y_{1}\right)+f\left(y_{2}\right)+\cdots+f\left(y_{n}\right)\right) \Delta x
\end{aligned}
$$

2) These formulas are shorter using \sum notation:

$$
A \approx \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) f\left(y_{k}\right)
$$

(with the convention that $x_{0}=a, x_{n}=b$).

If "gap-size" is fixed:

$$
A \approx \sum_{k=1}^{n} f\left(y_{k}\right) \Delta x
$$

Remark: $\Delta x=\frac{b-a}{n}$

Definition: Any of these sums

$$
\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) f\left(y_{k}\right)
$$

is called a Riemann Sum.
If you have divided $[a, b]$ into n intervals, it is called an nth Riemann Sun, denoted S_{n}.

Whole point: We can see the "error" decreases as we take finer and finer subdivisions.

Hence:

$$
A=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(y_{k}\right) \Delta x_{k}
$$

provided the "gap sizes" $\longrightarrow 0$.

Crucial question: Does the way we split up the interval / the y_{k} 's we pick affect our answer in the limit?

Answer: No (as long as f is continuous and gap sizes go to zero).

Remark: Sometimes we don't pick our y k's randomly: If we make the gap size constant: $\Delta x=\frac{b-a}{n}$, and:

1) If we make $y_{k}=x_{k}$, we call this the

Right endpoint approximation:

$$
R_{n}:=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

2) If we make $y_{k}=x_{k-1}$, we call this the Left endpoint approximation:

$$
L_{a}:=\sum_{k=1}^{n} f\left(x_{k-1}\right) \Delta x
$$

Right endpoint approx.

Left endpoint approx.

Remark: $\quad \mathcal{A}=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} L_{n}$
(provided that gap size $\rightarrow 0$).

Calculating Limits of Riemann sums

The following formulas are sometimes useful in calculating Riemann sums. I have attached some visual proofs at the end of the lecture.

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{(2 n+1) n(n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

- 0

Let us now consider Example 1. We want to find $A=$ the area under the curve $y=1-x^{2}$ on the interval $[a, b]=[0,1]$.

We know that $A=\lim _{n \rightarrow \infty} R_{n}$, where R_{n} is the right endpoint approximation using n approximating rectangles.

We must calculate R_{n} and than find $\lim _{n \rightarrow \infty} R_{n}$.

1. We divide the interval $[0,1]$ into n strips of equal length $\Delta x=\frac{1-0}{n}=1 / n$. This gives us a partition of the interval $[0,1]$,

$$
x_{0}=0, \quad x_{1}=0+\Delta x=1 / n, \quad x_{2}=0+2 \Delta x=2 / n, \quad \ldots, \quad x_{n-1}=(n-1) / n, \quad x_{n}=1 .
$$

2. We will use the right endpoint approximation R_{n}.
3. The heights of the rectangles can be found from the table below:

x_{i}	$x_{0}=0$	$x_{1}=1 / n$	$x_{2}=2 / n$	$x_{3}=3 / n$	\ldots	$x_{n}=n / n$
$f\left(x_{i}\right)=1-\left(x_{i}\right)^{2}$	1	$1-1 / n^{2}$	$1-2^{2} / n^{2}$	$1-3^{2} / n^{2}$	\ldots	$1-n^{2} / n^{2}$

4.

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x= \\
\left(1-\frac{1}{n^{2}}\right) \frac{1}{n}+\left(1-\frac{2^{2}}{n^{2}}\right) \frac{1}{n}+\left(1-\frac{3^{2}}{n^{2}}\right) \frac{1}{n}+\cdots+\left(1-\frac{n^{2}}{n^{2}}\right) \frac{1}{n}= \\
\frac{1}{n}-\frac{1}{n^{2}}\left(\frac{1}{n}\right)+\frac{1}{n}-\frac{2^{2}}{n^{2}}\left(\frac{1}{n}\right)+\frac{1}{n}-\frac{3^{2}}{n^{2}}\left(\frac{1}{n}\right)+\cdots+\frac{1}{n}-\frac{n^{2}}{n^{2}}\left(\frac{1}{n}\right)=
\end{gathered}
$$

5. Finish the calculation above and find $A=\lim _{n \rightarrow \infty} R_{n}$ using the formula for the sum of squares and calculating the limit as if R_{n} were a rational function with variable n.

Also $\quad A=\lim _{n \rightarrow \infty} L_{n}$
From Part 3, we have $\Delta x=1 / n$ and

$$
\begin{aligned}
& L_{n}=\frac{1}{n}+\left(1-\frac{1}{n^{2}}\right) \frac{1}{n}+\left(1-\frac{2^{2}}{n^{2}}\right) \frac{1}{n}+\left(1-\frac{3^{2}}{n^{2}}\right) \frac{1}{n}+\cdots+\left(1-\frac{(n-1)^{2}}{n^{2}}\right) \frac{1}{n} \\
& \frac{1}{n}+\frac{1}{n}-\frac{1}{n^{2}}\left(\frac{1}{n}\right)+\frac{1}{n}-\frac{2^{2}}{n^{2}}\left(\frac{1}{n}\right)+\frac{1}{n}-\frac{3^{2}}{n^{2}}\left(\frac{1}{n}\right)+\cdots+\frac{1}{n}-\frac{(n-1)^{2}}{n^{2}}\left(\frac{1}{n}\right)=
\end{aligned}
$$

grouping the $\frac{1}{n}$'s together, we get

$$
\begin{gathered}
=\frac{n}{n}-\frac{1}{n}\left[\frac{1^{2}}{n^{2}}+\frac{2^{2}}{n^{2}}+\frac{3^{2}}{n^{2}}+\cdots+\frac{(n-1)^{2}}{n^{2}}\right] \\
=1-\frac{1}{n^{3}}\left[1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}\right] \\
=1-\frac{1}{n^{3}} \sum_{i=1}^{n-1} i^{2}=1-\frac{1}{n^{3}}\left[\frac{(2(n-1)+1)(n-1)((n-1)+1)}{6}\right] \\
=1-\frac{1}{n^{3}}\left[\frac{(2 n-1)(n-1)(n)}{6}\right] \\
=1-\frac{n}{6 n^{3}}(2 n-1)(n-1) \\
=1-\frac{2 n^{2}+\text { smaller powers of } n}{6 n^{2}}
\end{gathered}
$$

So

$$
\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty}\left[1-\frac{2 n^{2}+\text { smaller powers of } n}{6 n^{2}}\right]=1-\frac{2}{6}=2 / 3
$$

Riemann Sums in Action: Distance from Velocity/Speed Data

To estimate distance travelled or displacement of an object moving in a straight line over a period of time, from discrete data on the velocity of the object, we use a Riemann Sum. If we have a table of values:

time $=t_{i}$	$t_{0}=0$	t_{1}	t_{2}	\ldots	t_{n}
velocity $=v\left(t_{i}\right)$	$v\left(t_{0}\right)$	$v\left(t_{1}\right)$	$v\left(t_{2}\right)$	\ldots	$v\left(t_{n}\right)$

where $\Delta t=t_{i}-t_{i-1}$, then we can approximate the displacement on the interval $\left[t_{i-1}, t_{i}\right]$ by $v\left(t_{i-1}\right) \times \Delta t$ or $v\left(t_{i}\right) \times \Delta t$. Therefore the total displacement of the object over the time interval $\left[0, t_{n}\right]$ can be approximated by

$$
\text { Displacement } \approx v\left(t_{0}\right) \Delta t+v\left(t_{1}\right) \Delta t+\cdots+v\left(t_{n-1}\right) \Delta t \quad \text { Left endpoint approximation }
$$

or

$$
\text { Displacement } \approx v\left(t_{1}\right) \Delta t+v\left(t_{2}\right) \Delta t+\cdots+v\left(t_{n}\right) \Delta t \quad \text { Right endpoint approximation }
$$

These are obviously Riemann sums related to the function $v(t)$, hinting that there is a connection between the area under a curve (such as velocity) and its antiderivative (displacement). This is indeed the case as we will see later.

When we use speed $=\mid$ velocity \mid instead of velocity. the above formulas translate to

$$
\text { Distance Travelled } \approx\left|v\left(t_{0}\right)\right| \Delta t+\left|v\left(t_{1}\right)\right| \Delta t+\cdots+\left|v\left(t_{n-1}\right)\right| \Delta t
$$

and

$$
\text { Distance Travelled } \approx\left|v\left(t_{1}\right)\right| \Delta t+\left|v\left(t_{2}\right)\right| \Delta t+\cdots+\left|v\left(t_{n}\right)\right| \Delta t
$$

Example The following data shows the speed of a particle every 5 seconds over a period of 30 seconds. Give the left endpoint estimate for the distance travelled by the particle over the 30 second period.

time in $\mathrm{s}=t_{i}$	0	5	10	15	20	25	30
velocity in $\mathrm{m} / \mathrm{s}=v\left(t_{i}\right)$	50	60	65	62	60	55	50

$$
\begin{gathered}
\quad L=\left|v\left(t_{0}\right)\right| \Delta t+\left|v\left(t_{1}\right) \Delta t+\cdots+\left|v\left(t_{6}\right)\right| \Delta t\right. \\
=50(5)+60(5)+65(5)+62(5)+60(5)+55(5) \\
=5[50+60+65+62+60+55]=1760 \mathrm{~m} .
\end{gathered}
$$

The above sum is a Riemann sum, telling us that the distance travelled is approximately the area under the (absolute vale of velocity) curve.... hmmmmm intetresting........ remember speed $=|v(t)|=$ derivative of distance travelled.

Extra Example Estimate the area under the graph of $f(x)=1 / x$ from $x=1$ to $x=4$ using six approximating rectangles and
$\Delta x=\frac{b-a}{n}=$ \qquad , where $[a, b]=[1,4]$ and $n=6$.
Mark the points $x_{0}, x_{1}, x_{2}, \ldots, x_{6}$ which divide the interval $[1,4]$ into six subintervals of equal length on the following axis:

Fill in the following tables:

x_{i}	$x_{0}=$	$x_{1}=$	$x_{2}=$	$x_{3}=$	$x_{4}=$	$x_{5}=$	$x_{6}=$
$f\left(x_{i}\right)=1 / x_{i}$							

(a) Find the corresponding right endpoint approximation to the area under the curve $y=1 / x$ on the interval $[1,4]$.
$R_{6}=$
(b) Find the corresponding left endpoint approximation to the area under the curve $y=1 / x$ on the interval [1,4].
$L_{6}=$
(c) Fill in the values of $f(x)$ at the midpoints of the subintervals below:

midpoint $=x_{i}^{m}$	$x_{1}^{m}=$	$x_{2}^{m}=$	$x_{3}^{m}=$	$x_{4}^{m}=$	$x_{5}^{m}=$	$x_{6}^{m}=$
$f\left(x_{i}^{m}\right)=1 / x_{i}^{m}$						

Find the corresponding midpoint approximation to the area under the curve $y=1 / x$ on the interval [1, 4].
$M_{6}=$

Extra Example Estimate the area under the graph of $f(x)=1 / x$ from $x=1$ to $x=4$ using six approximating rectangles and
$\Delta x=\frac{b-a}{n}=\frac{4-1}{6}=\frac{1}{2}$, where $[a, b]=[1,4]$ and $n=6$.
Mark the points $x_{0}, x_{1}, x_{2}, \ldots, x_{6}$ which divide the interval [1,4] into six subintervals of equal length on the following axis:

Fill in the following tables:

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$
$f\left(x_{i}\right)=1 / x_{i}$	1	$2 / 3$	$1 / 2$	$2 / 5$	$1 / 5$	$2 / 7$	$1 / 4$

(a) Find the corresponding right endpoint approximation to the area under the curve $y=1 / x$ on the interval $[1,4]$.

$$
\begin{aligned}
R_{6}=f\left(x_{1}\right) \Delta x & +f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x+f\left(x_{5}\right) \Delta x+f\left(x_{6}\right) \Delta x \\
= & \frac{2}{3} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}+\frac{2}{5} \cdot \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{2}+\frac{2}{7} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{1}{2} \\
& =\frac{2}{6}+\frac{1}{4}+\frac{2}{10}+\frac{1}{6}+\frac{2}{14}+\frac{1}{8}=1.217857
\end{aligned}
$$

(b) Find the corresponding left endpoint approximation to the area under the curve $y=1 / x$ on the interval $[1,4]$.

$$
\begin{aligned}
L_{6}=f\left(x_{0}\right) \Delta x & +f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x+f\left(x_{5}\right) \Delta x \\
= & 1 \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}+\frac{2}{5} \cdot \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{2}+\frac{2}{7} \cdot \frac{1}{2} \\
= & \frac{1}{2}+\frac{2}{6}+\frac{1}{4}+\frac{2}{10}+\frac{1}{6}+\frac{2}{14}=1.59285
\end{aligned}
$$

(c) Fill in the values of $f(x)$ at the midpoints of the subintervals below:

midpoint $=x_{i}^{m}$	$x_{1}^{m}=5 / 4$	$x_{2}^{m}=7 / 4$	$x_{3}^{m}=9 / 4$	$x_{4}^{m}=11 / 4$	$x_{5}^{m}=13 / 4$	$x_{6}^{m}=15 / 4$
$f\left(x_{i}^{m}\right)=1 / x_{i}^{m}$	$4 / 5$	$4 / 7$	$4 / 9$	$4 / 11$	$4 / 13$	$4 / 15$

Find the corresponding midpoint approximation to the area under the curve $y=1 / x$ on the interval $[1,4]$.

$$
\begin{gathered}
M_{6}=\sum_{i=1}^{6} f\left(x_{i}^{*}\right) \Delta x \\
=\frac{4}{5} \cdot \frac{1}{2}+\frac{4}{7} \cdot \frac{1}{2}+\frac{4}{9} \cdot \frac{1}{2}+\frac{4}{11} \cdot \frac{1}{2}+\frac{4}{13} \cdot \frac{1}{2}+\frac{4}{15} \cdot \frac{1}{2}=1.376934
\end{gathered}
$$

Extra Example Find the area under the curve $y=x^{3}$ on the interval $[0,1]$.
We know that $A=\lim _{n \rightarrow \infty} R_{n}$, where R_{n} is the right endpoint approximation using n approximating rectangles.

We must calculate R_{n} and than find $\lim _{n \rightarrow \infty} R_{n}$.

1. We divide the interval $[0,1]$ into n strips of equal length $\Delta x=\frac{1-0}{n}=1 / n$. This gives us a partition of the interval $[0,1]$,

$$
x_{0}=0, \quad x_{1}=0+\Delta x=1 / n, \quad x_{2}=0+2 \Delta x=2 / n, \quad \ldots, \quad x_{n-1}=(n-1) / n, \quad x_{n}=1 .
$$

2. We will use the right endpoint approximation R_{n}.
3. The heights of the rectangles can be found from the table below:

x_{i}	$x_{0}=0$	$x_{1}=1 / n$	$x_{2}=2 / n$	$x_{3}=3 / n$	\ldots	$x_{n}=n / n$
$f\left(x_{i}\right)=\left(x_{i}\right)^{3}$	0	$1 / n^{3}$	$2^{3} / n^{3}$	$3^{3} / n^{3}$	\ldots	n^{3} / n^{3}

4.

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x= \\
\left(\frac{1}{n^{3}}\right) \frac{1}{n}+\left(\frac{2^{3}}{n^{3}}\right) \frac{1}{n}+\left(\frac{3^{3}}{n^{3}}\right) \frac{1}{n}+\cdots+\left(\frac{n^{3}}{n^{3}}\right) \frac{1}{n}= \\
=\sum_{i=1}^{n} \frac{i^{3}}{n^{4}}=\frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}=\frac{1}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}
\end{gathered}
$$

5.

$$
\begin{gathered}
A=\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}=\lim _{n \rightarrow \infty} \frac{n^{2}(n+1)^{2}}{4 n^{4}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{4 n^{2}} \\
=\lim _{n \rightarrow \infty} \frac{1}{4} \cdot \frac{(n+1)}{n} \cdot \frac{(n+1)}{n}=\frac{1}{4} .
\end{gathered}
$$

Extra Example, estimates from data on rate of change The same principle applies to estimating Volume from discrete data on its rate of change:
Oil is leaking from a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour, recorded in the following table.

time in h	0	1	2	3	4	5	6	7	8
leakage in gal/h	50	70	97	136	190	265	369	516	720

The following gives the right endpoint estimate of the amount of oil that has escaped from the tanker after 8 hours:

$$
R_{8}=70 \cdot 1+97 \cdot 1+136 \cdot 1+190 \cdot 1+265 \cdot 1+369 \cdot 1+516 \cdot 1+720 \cdot 1=2363 \text { gallons. }
$$

The following gives the right endpoint estimate of the amount of oil that has escaped from the tanker after 8 hours:

$$
L_{8}=50 \cdot 1+70 \cdot 1+97 \cdot 1+136 \cdot 1+190 \cdot 1+265 \cdot 1+369 \cdot 1+516 \cdot 1=1693 \text { gallons. }
$$

Since the flow of oil seems to be increasing over time, we would expect that
$L_{8}<$ true volume leaked $<R_{8}$ or the true volume leaked in the first 8 hours is somewhere between 1693 and 2363 gallons.

Visual proof of formula for the sum of integers:

I sıəるวұuI fo sums

