Optimization Problems

In this section we will apply our skills in identifying maxima and minima to problems in optimization.
Example I have 400 meters of fence with which I will fence off a rectangular plot of land. What should the dimensions of the plot be in order to maximize the area of the plot?

General principles for solving optimization problems

1. Read the problem carefully so that you fully understand what you have to solve for and what information you are given.
2. Draw a diagram and identify what information you are given and what you need to find.
3. Introduce notation If possible express the unknown quantity to be maximized/minimized as a function of one or two variables. Write down all equations relating these variables.
Try to express the unknown quantity to be maximized/minimized as a function of one variable.
4. Identify the critical points of the function and use these and the values at endpoints to find the absolute maximum/ minimum of the function as appropriate.

Example 2 An open top box is to be made by cutting small congruent squares from the corners of a 12 -in by 12 -in sheet of cardboard and bending up the sides. Find the largest possible volume of the box.

Example 9 Jane is 2 miles offshore in a boat and wishes to reach a coastal village 6 miles down the straight shoreline from the point nearest the boat. She can row at 2 mph and can walk at 5 mph . Where should she land her boat to reach the village in the least amount of time?

To find absolute extreme values for a function $f(x)$ on an interval (perhaps $(0, \infty)$ or $(-\infty, \infty)$, we can sometimes use the following variant of the first derivative test, which agrees with our common sense:

Modified First Derivative Test Suppose that c is a critical number of a continuous function f on an interval I. Then

1. If $f^{\prime}(x)>0$ for all $x<c$ and $f^{\prime}(x)<0$ for all $x>c$, then $f(c)$ is the absolute maximum value of f.
2. If $f^{\prime}(x)<0$ for all $x<c$ and $f^{\prime}(x)>0$ for all $x>c$, then $f(c)$ is the absolute minimum value of f.

Example How close does the curve $y=\sqrt{x}$ come to the point $(3 / 2,0)$.

Example The revenue from selling x widgets is $\$ 6 x$ where x is given in millions. The cost of producing x items is given by $c(x)=x^{2}+8$. Is there a production level that maximizes profit, $p(x)=r(x)-c(x)$?

$$
p(x)=r(x)-c(x)=6 x-\left[x^{2}+8\right]=-x^{2}+6 x-8=-\left[x^{2}-6 x+8\right]
$$

We must maximize $p(x)$ on the interval $[0, \infty)$.

Critical Points of $p(x)$:
$p^{\prime}(x)=-2 x+6=-2(x-3) . p(x)=0$ if $x=3$.
We see that $p^{\prime}(x)<0$ if $x>3$ and $p^{\prime}(x)>0$ if $x<3$.
Therefore at $x=3$ the profit function reaches a local maximum, by the first derivative test.
Since $p(x)$ is increasing on the interval $(0,3)$ and decreasing on the interval $(3, \infty)$, we can conclude that there is a global maximum at $x=3$.

The profit at $x=3$ (million widgets) is $P(3)=-9+18-8=1$ million dollars.

Extra Example(answer on next page) The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. Find the dimensions of the strongest beam that can be cut from a 12 inch diameter cylindrical log.

It is given that $S=k w d^{2}$ where k is a constant. If we find the value of w that gives us the maximum of the function $S_{1}=w d^{2}$, then the same value of w maximizes S.
So we want to maximize $S_{1}=w d^{2}$ for $0 \leq w \leq 12$.
We also have $d^{2}+w^{2}=144$, giving us that $d^{2}=\left(144-w^{2}\right)$.
This gives us that $S_{1}=w\left(144-w^{2}\right)=144 w-w^{3}$.
Critical Points:

$$
\begin{gathered}
\frac{d S_{1}}{d w}=144-3 w^{2} \\
\frac{d S_{1}}{d w}=0 \text { if } 144=3 w^{2} \text { or } w=\sqrt{48}
\end{gathered}
$$

since w must be greater than 0 .
We know that S_{1} has an absolute maximum at $w=\sqrt{48}$ from checking the value of $S_{1}=w\left(144-w^{2}\right)$ at the endpoints of the interval $[0,12]$ and at the critical point $w=\sqrt{48}$.
$S_{1}(0)=0, \quad S_{1}(\sqrt{48})=\sqrt{48}(144-48)=96 \sqrt{48}, \quad S_{1}(12)=12(144-144)=0$

Example: (Heron's Problem)

A person is beside a riverbank with a bucket. They want to get water from a nearby (perfectly straight) river and bring it to an unmovable container. What point on the river should they fetch the water from to minimise the distance of their journey?

Challenge: Solve this with and without calculus. i.e. give two solutions.

Find where ω should be.

