$\oint 19$ Limits at infinity:
There are mary reasons why we might want to consider the behaviour of a function as the inputs become "very large" in magnitude.

Definition: Say $f:(a, \infty) \longrightarrow \mathbb{R}, a>0$.
Then we write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if for all $\Sigma>0$, there is an $M \in \mathbb{R}$ such that for all $x \geq M$

$$
|f(x)-L|<\Sigma
$$

Translation: We say $\lim _{x \rightarrow \infty} f(x)=L$ if, no matter how small of a gap we put around L, we can ensure that our outputs are inside this gap, by having our inputs larger than some M.

Picture

Definition: We say $\lim _{x \rightarrow-\infty} f(x)=L$ if for all $i>0$, there is an $n \in \mathbb{R}$ such that, for $x<n$, we have

$$
|f(x)-L|<\Sigma
$$

Exercise: Translate thus and express it as a picture.

Note The symbol ∞ here does not represent a number, rather the symbol $\lim _{x \rightarrow \infty}$ means the limit as x becomes increasingly large.
Example Consider the graph of the function shown below. Judging from the graph, find are the limits

$$
\lim _{x \rightarrow \infty} f(x)=\square \lim _{x \rightarrow-\infty} f(x)=
$$

\qquad

We can see from the above graph that if $\lim _{x \rightarrow \infty} f(x)=L$, then the graph get closer and closer to the line $y=L$ as x approaches infinity.

Definition: If $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$
we say the line $y=L$ is a horizontal asymptote of the curve $y=f(x)$.

Example: What are the horizontal asymptotes
of the graph shown below?

Definition Let f be a function defined on some interval (a, ∞). Then we say

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

if the values of $f(x)$ can be made arbitrarily large by taking x sufficiently large or equivalently if for any positive integer N, there is a number M so that for all $x>M, f(x)>N$.
We give similar meaning to the statements

$$
\lim _{x \rightarrow \infty} f(x)=-\infty, \quad \lim _{x \rightarrow-\infty} f(x)=\infty \quad \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

Remark: Recall the limit laws from lecture
4. These laws still apply for limits $x \rightarrow \infty$.

NB
Strategy: when confronted with a limit as $x \rightarrow \infty$ of a rational function

$$
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{P(x)}{Q(x)}
$$

divide top and tottone by x^{k} where K is the largest power in the denominate or i.e. $K=\operatorname{deg}(Q)$ inside the limit and solve using one of the following:

Theorem: (i) $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0$ for all $r>0$.
(ii) $\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0$ for all $r>0$ such that x^{r} is defined.

$$
\lim _{x \rightarrow \infty} x^{n}=\infty, \quad \lim _{x \rightarrow-\infty} x^{2 n}=\infty \quad \lim _{x \rightarrow-\infty} x^{2 n+1}=-\infty
$$

for all positive integers n. Using this and law 10 above, we get that for all positive integers m, n

$$
\lim _{x \rightarrow \infty} x^{\frac{n}{m}}=\infty, \quad \lim _{x \rightarrow-\infty} x^{\frac{2 n}{2 m+1}}=\infty \quad \lim _{x \rightarrow-\infty} x^{\frac{2 n+1}{2 m+1}}=-\infty
$$

Example Evaluate
$\lim _{x \rightarrow \infty} \frac{5 x^{3}+x+1}{x^{2}-1}, \quad \lim _{x \rightarrow-\infty} \frac{5 x^{3}+x+1}{x^{2}-1}, \quad \lim _{x \rightarrow \infty} \frac{5 x+1}{x^{2}-4}, \quad \lim _{x \rightarrow-\infty} \frac{5 x+1}{x^{2}-4} \quad \lim _{x \rightarrow-\infty} \frac{5 x^{5}+1}{|x|^{5}-4}$

Example Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}+3}}{2 x+5}, \quad \lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}+3}}{2 x+5}, \quad \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-2 x}\right)
$$

Example: If you are confronted with the following limit:

$$
\lim _{x \rightarrow \infty} \frac{x^{9}+x^{2}+7}{x^{6}+3}
$$

what should you do?
Ans:

Example: Find the following limits:
(i) $\lim _{x \rightarrow \infty} \frac{2 x+1}{x-5}$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2 x+1}{x-5}\left.=\lim _{x \rightarrow \infty}\left(\frac{2 x+1}{x-5} \cdot \frac{1 / x}{1 / x}\right\}=z_{\sim}\right) \\
&=\lim _{x \rightarrow \infty} \frac{2+1 / x}{1-5 / x} \quad f_{\infty} \frac{1}{x} \neq 0 \\
&=\lim _{x \rightarrow \infty}(2+1 / x) \\
& \lim _{x \rightarrow \infty}(1-5 / x) \\
&=\frac{2}{1}=2
\end{aligned}
$$

(ii) $\lim _{x \rightarrow-\infty} \frac{2 x+1}{x-5}$

$$
\text { (iii) } \lim _{x \rightarrow \infty} \frac{3 x^{17}+x^{3}+1}{x^{7}+4 x^{17}}
$$

$$
\text { (iv) } \lim _{x \rightarrow-\infty} \frac{x^{21}+3 x+1}{x^{37}+2}
$$

(v) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+x+1}{3 x^{2}-1}$

$$
\text { (vi) } \lim _{x \rightarrow-\infty} \frac{2 x^{2}+x+1}{3 x^{2}-1}
$$

(vii) What are the vertical and horizontal asymptotes of $g(x)=\frac{2 x^{2}+x+1}{3 x^{2}-1}$?

Note we can also use the squeeze theorem when calculating limits at ∞.
Example Find

$$
\lim _{x \rightarrow \infty} \cos x, \quad \lim _{x \rightarrow \infty} \frac{\cos x}{x} \quad \lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right), \quad \lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right), \quad \lim _{x \rightarrow-\infty} \frac{5 x+1}{x^{2}+\sin x-4} .
$$

if they exist.

Limits of Polynomials at Infinity and minus infinity

Let

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

be a polynomial function. Then the behavior of $P(x)$ at $\pm \infty$ is the same as that of its highest term. That is

$$
\lim _{x \rightarrow \infty} P(x)=\lim _{x \rightarrow \infty} a_{n} x^{n} \quad \text { and } \quad \lim _{x \rightarrow-\infty} P(x)=\lim _{x \rightarrow-\infty} a_{n} x^{n}
$$

(To prove this consider the limit $\lim _{x \rightarrow \pm \infty} \frac{P(x)}{a_{n} x^{n}}$.)
Example Find
$\lim _{x \rightarrow \infty} x^{4}+2 x+1, \quad \lim _{x \rightarrow-\infty} 2 x^{3}+x^{2}+1, \quad \lim _{x \rightarrow \infty}-3 x^{5}+10 x^{2}+4562 x+1, \quad \lim _{x \rightarrow \infty}(x-2)^{3}(x+1)^{2}(x-1)^{5}$

Note that we can use the following short cut for calculating limits of rational functions as $x \rightarrow \pm \infty$:

$$
\lim _{x \rightarrow \pm \infty} \frac{a x^{n}+\text { lin. comb. of lower powers }}{b x^{m}+\text { lin. comb. of lower powers }}=\lim _{x \rightarrow \pm \infty} \frac{a x^{n}}{b x^{m}}
$$

where m and n are positive integers.

