§ 16. The Mean Value Theorem:

Theorem: (Rule's Theorem)
Suppose that f is a function which is continuous on $[a, b]$ and differentiable on (a, b) with $\quad f(a)=f(b)$.

Then, there is $a \quad c \in(a, b)$ such that

$$
f^{\prime}(c)=0
$$

Picture:

Proof of Rale's Theorem:
By the extreme value theorem, f attains a maximum and a minimum on $[a, b]$.

If either of these happen at $c \in(a, b)$, it means they are a local maximum or minimum.
Fermat's theorem then tells us that $f^{\prime}(c)=0$ or $f^{\prime}(c)$ doesn't exist.

But we have f is differentiable on (a, b).
Hence we would have to have $f^{\prime}(c)=0$ and we would be done.

If instead f attains it's max and min at a and b we have:
$f(a)=f(b)=k$ such that $k \leq f(x) \leq k$ for all $x \in(a, b)$. Hence $f(x)=k$ for all $x \in(a, b)$ and we have $f^{\prime}(x)=0$ for all $x \in(a, b)$.

Examples:
1)

$$
\begin{aligned}
& f(x)=x^{3}-x^{2}-x \\
& f(-1)=-1-1+1=-1 \\
& f(1)=1-1-1=-1
\end{aligned}
$$

f is a polynomial, so it is continuous and differentiable on all of \mathbb{R}.

Hence, by Rolle's theorem, there is a $c \in(-1,1)$ such that $f^{\prime}(c)=0$
2)

$$
h(x)=x^{3}+2 x^{2}-x-1
$$

Find a $c \in(-2,1)$ such that $h^{\prime}(c)=0$.
Solution: As $h(-2)=h(1)=1$, and h is continuous on $[-2,1]$ and differentiable on $(-2,1)$, Rule's Theorem guarantees that such a c exists.

$$
\begin{aligned}
& h^{\prime}(x)=3 x^{2}+4 x-1 \\
& h^{\prime}(d)=0 \Rightarrow d=\frac{-4 \pm \sqrt{(4)^{2}-4(3)(-1)}}{2(3)}
\end{aligned}
$$

So $c=\frac{-4 \pm \sqrt{28}}{6}=\frac{-2 \pm \sqrt{7}}{3} \approx-1.55,0.215$

Non -example:

Here we have a function:

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{lll}
x^{2 / 3} & \text { if } & x \leq 2 \\
10-x & \text { if } & x>2
\end{array}\right. \\
& g(-1)=g(1)=g(9)=1
\end{aligned}
$$

but $g^{\prime}(x) \neq 0$ for any $x \in(-1,1) \cup(1,9)$
Why does Rolle's Theorem fail in this example?
Ans: Because the function is not differentiable at $0 \in(-1,1)$ or at

$$
2 \in(1,9)
$$

Example: (Particle in motion)
If $s(t)$ is the position function for a particle and we have $s\left(t_{1}\right)=s\left(t_{2}\right)$ for two different times, what can we conclude from Rolls's theorem?

Does this coincide with our intuition?
Ans: There is a $t_{*} \in\left(t_{1}, t_{2}\right)$ such that $s^{\prime}\left(t_{*}\right)=0$.
ie. $\quad v\left(t_{*}\right)=0$
This coincides with "staying still" or "turning around".

Remark: Unless otherwise stated, we assume motion in real life to be smooth (continuous, differentiable, twice differentiable,...)

Using Tole's Theorem with IVT:
Example: Show that the equation

$$
x^{3}+3 x+1=0
$$

has exactly one real solution.
Sola:
Define $f(x)=x^{3}+3 x+1$
f is continuous and differentiable on \mathbb{R} as it is a polynomial.

$$
\begin{aligned}
& f(-1)=-3 \\
& f(0)=1
\end{aligned}
$$

Hence, by the Intermediate Value Theorem, there is an $a \in(-1,0)$ such that $f(a)=0$.
So there is at least one root.
Question: Can there be another root?

Answer: No.
Reason: Say there is another root: b
So $\quad f(a)=f(b)=0$.
Then, by Rolle's theorem, there is a point c between a and b such that $f^{\prime}(c)=0$.

But $f^{\prime}(x)=3 x^{2}+3 \geq 3\left(x^{2}+1\right) \geq 3>0$

Hence, such a c cannot exist.

Hence, such a b cannot exist.
So $x^{3}+3 x+1=0$ has exactly one solve ion.

Concept: A common method of proof in mathematics is -proof by contradiction:

- Assume statement X is false.
- Arrive at a contradiction.
- Hence, statement x must be true.

Example:
Claim: There is no biggest number.
Proof: Assume there is a number, $K \in \mathbb{R}$, such that $k \geq x$ for all $x \in \mathbb{R}$.

Let $\quad x=k+1 \in \mathbb{R}$

$$
(*) \Rightarrow k+1 \leq k \Rightarrow 1 \leq 0
$$

This is obviously nonsense. So we made a false assertion along the way. ie. (*) is false and there is no biggest number.

Theorem: (The Mean Value Theorem)
Suppose that a function f is continuous On an interval $[a, b]$ and differentiable on $\quad(a, b)$.

Then there is at least one point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Picture:

Proof: The chord AB corresponds with the line $g(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$

Consider $\quad h(x)=f(x)-g(x)$.

$$
\begin{aligned}
& h(a)=f(a)-g(a)=0 \\
& h(b)=f(b)-g(b)=f(b)-f(b)=0
\end{aligned}
$$

Hence, by Rolle's theorem, there is a $c \in(a, b)$ such that $h^{\prime}(c)=0$

$$
\begin{aligned}
& \Rightarrow \quad f^{\prime}(c)-g^{\prime}(c)=0 \\
& \Rightarrow \quad f^{\prime}(c)=g^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

Physical Interpretation Recall $\frac{f(b)-f(a)}{b-a}$ is the average rate of change of the function f on the interval $[a, b]$ and $f^{\prime}(c)$ is the instantaneous rate of change at the point c. The Mean Value Theorem says that at some point in the interval $[a, b]$ the instantaneous rate of change is equal to the average rate of change over the interval (as long as the function is continuous on $[a, b]$ and differentiable on (a, b).)
Sometimes we can find a value of c that satisfies the conditions of the mean Value Theorem.
Example Let $f(x)=x^{3}+2 x^{2}-x-1$, find all numbers c that satisfy the conditions of the Mean Value Theorem in the interval $[-1,2]$.

Aim: To find all $c \in(-1,2)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}=\frac{13-1}{3}=4
$$

Sol: $f^{\prime}(x)=3 x^{2}+4 x-1$

So we wart $3 c^{2}+4 c-1=4$

Remark: The Mean Value Theorem guarantees there is an answer.

$$
\begin{aligned}
3 c^{2}+4 c-5=0 \Rightarrow c & =\frac{-4 \pm \sqrt{16-4(3)(-5)}}{2(3)} \\
& =\frac{-2 \pm \sqrt{19}}{3} \\
& \approx-2.12 \text { or } 0.786
\end{aligned}
$$

So the c we were looking for is $c=0.786$.

Example A car passes a camera at a point A on the toll road with speed 50 mph . Sixty minutes later the same car passes a camera at a point B, located 100 miles down the road from camera A, traveling at 50 mph . Can we prove that the car was breaking the speed limit ($75 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) at some point along the road?

$$
\begin{aligned}
\text { Average velocity } & =\frac{\text { Charge in p }}{\text { Time ta }} \\
& =\frac{100 \mathrm{miles}}{1 \text { hover }} \\
& =100 \mathrm{mph}
\end{aligned}
$$

The mean value theorem tells us (as we assume physical motion to be smooth) that there must have been a time t_{*} where

$$
S^{\prime}\left(t_{*}\right)=v\left(t_{*}\right)=\frac{S(1)-s(0)}{1-0}=100 \mathrm{mph}
$$

Tie. the car must have broke the speed Limit.

We can also use this theorem to make inferences about the growth of a function from knowledge about its derivative:

Example If $f(0)=1, f^{\prime}(x)$ exists for all values of x and $f^{\prime}(x) \leq 4$ for all x, how large can $f(2)$ possibly be?

By MVT: There is a $c \in(0,2)$ such that

$$
\frac{f(2)-f(0)}{2-0}=f^{\prime}(c) \Rightarrow \frac{f(2)-1}{2} \leq 4 \Rightarrow f(2) \leq 9
$$

Example If $f(0)=5, f^{\prime}(x)$ exists for all x and $-1 \leq f^{\prime}(x) \leq 3$ for all x, show that

$$
-5 \leq f(10) \leq 35
$$

By MUT there is a $c \in(0,10)$ such that

$$
\frac{f(10)-f(0)}{10-0}=f^{\prime}(c)
$$

But

$$
-1 \leq f^{\prime}(c) \leq 3
$$

Hence

$$
-1 \leq \frac{f(10)-f(0)}{10-0} \leq 3
$$

$$
\begin{array}{ll}
\Rightarrow & -10 \leq f(10)-5 \leq 30 \\
\Rightarrow & -5 \leq f(10) \leq 35
\end{array}
$$

Consequences of MVT:
We now have answers to the following questions:

1) If $f^{\prime}(x)=0$ for all $x \in(a, b)$, does that mean f is constant on (a, b) ?

Answer: Yes.
Proof: Let $a<x_{1}<x_{2}<b$.
As f is differentiable on (a, b), we know it is continuous on (a, b). Hence the MVT applies.

Hence, there is a $c \in\left(x_{1}, x_{2}\right)$ such that $\quad f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$

But $c \in(a, b)$. So $f^{\prime}(c)=0$

$$
\Rightarrow \quad f\left(x_{2}\right)-f\left(x_{1}\right)=O\left(x_{2}-x_{1}\right)=0
$$

ie. $\quad f\left(x_{2}\right)=f\left(x_{1}\right)$
2) If $f^{\prime}(x)=g^{\prime}(x)$ on (a, b), what can be said about the relationship between f and g ?
Answer: $f(x)=g(x)+C_{1}$ where C is a constant.

Proof: Apply previous result to $f-g$.

Example: Find a function with $f^{\prime}(x)=3 x^{2}$ and $\quad f(0)=1$.

Soln: A first guess would be $g(x)=x^{3}$ But $g(0)=0 \neq 1$.

So we wort to find f such that $f^{\prime}(x)=g^{\prime}(x)$ with $f(0)=1$

Consequence 2 tells us that we must have $\quad f(x)=g(x)+c$ for some constant C

Then we wart:

$$
1=f(0)=g(0)+c_{1}=0+c_{1}=c_{1}
$$

Hence, we must have:

$$
f(x)=g(x)+1=x^{3}+1
$$

