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Example Consider the function in the example above f(x) = 22 + 2z + 4. The graph, y = f(z) is
shown below along with the graph of the new function f’(x) = 2z + 2. We can see how the graph of
f'(x) is related to the slope of the tangents to the graph of f.
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Fill in <, > or = as appropriate:

When f(x) is decreasing the function f'(z)__ 0
When f(z) is increasing the function f'(z)__ 0
At the turning point x = —1, f'(z)__ 0



Example Consider the function f(z) = |z|.
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Notation

The second derivative is also denoted by

o) = () - Dy

dr \dz dx?
The third derivative of f is the derivative of the second derivative, denoted
d " . " . m o, (3) _ d (de) L d3y
Higher derivative are denoted
d'y d>y
4 ) 5 _ (5 _
fO() = W = e fOx) =y = o5 Clc

Example If f(z) = 2% + 22 + 4, find f@(2) and O (2).
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Old Exam Questions

1. Find the derivative of the function

using the limit definition of the derivative.

2. Which of the statements given below is false?

If f is differentiable at x = a, then lim,_., W

)
b) If f is differentiable at x = a, then a must be in the domain of f.

(
(
(c) If f is differentiable at x = a, then lim,_., W must exist.
(d) If f is differentiable at © = a, then f must be continuous at = = a.
(

must equal f(a).

a+h)—f(a)

e) If f is differentiable at x = a, then lim,,_,o- / (a+h,1_f @) limy,_, o+ I

h

| 2.
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(e)

The graph of the function f(x) is shown below:

Which of the following gives the graph of f'(x)?

10

None of the above




Old Exam Question , Sample Solution

1. Find the derivative of the function

using the limit definition of the derivative.

Note the format of the solution below. It is important to carry the limits and show all
calculations in order to recieve full credit

fle+h) — f(z)

f(x) = lim

h—0 h
x+h
h—0 h

im (r+h)(x =5 —a@+h-5) 1

h—0 (x+h—5)(xz —5) h
I 2>+ hr—5x—5h—a2>—zxh+5x 1
= lim .
h—0 (x +h—>5)(x—5) h
. &*+ hx— pxr —Bh— £*— fh+ pr 1
= lim -
h—0 (x +h—>5)(x —5) h
= lim S/ i
=0 (x4+h—5)(x—5) A
= lim =
- =0 (x+h—5)(x —5)
B -5
(x —5)(z —5)
—H




2. Which of the statements given below is false?

If f is differentiable at a,
1. a must be in the domain of f.

must exist at a.

2. limy, g f(a‘i‘h}z—f(x)

3. f must be defined in an open interval containing a.

(a) If f is differentiable at x = a, then lim, ., W must equal f(a). false, it is not required

that this limit is f(a). For example consider f(x) = z* + 2z + 4 from the notes. f'(z) = 2z + 2.
f'(1) = lim,_, {20 — g o (1) = 7.

(b) If f is differentiable at z = a, then a must be in the domain of f. True see 1 above.

(¢) If fis differentiable at = = a, then lim,_, £2=%) myust exist. True see 2 above.

r—a

(d) If f is differentiable at x = a, then f must be continuous at x = a. True by the theorem given in
notes.

(e) If f is differentiable at = a, then limj_,q- ! (a+hg_f (@) _ limy, o+ / (a+h}1_f (@) Trye since the limit

exists only if the laft and right hand limits exist and are equal.

3. The derivative must be positive when f(z) is increasing and negative when it is decreasing. In
particular f’(x) > 0 for all values of x bigger than 4 in this instance. Therefore the answer is (a).



