$\oint 10$. Chain Rule:
Motivation: When dealing with derivatives, we are dealing with the rate of change of one object with respect to another. These relationships can be quite complicated.

Examples:

1) The relationship between the popularity of cooking shows and the amount of people with obscure spices in their home that they'll only use once.
2)

Remark: We can make complicated relationships easier to understand by breaking them up into a chain of simpler relationships.
ie. We break a complicated process:

into a chain of simpler processes:

$$
x \rightarrow \sum^{\square} g \rightarrow g(x) \rightarrow \sum^{\square} \square \rightarrow f(g(x))
$$

such that $F(x)=f(g(x))$

$$
\text { zee. } F=f \circ g
$$

So we need to figure out how to differentiate a composition.

Theorem: (Chain Rule)
If g is differentiable at x and f is differentiable at $g(x)$, then $f \circ g$ is differentiable at x and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

or, in Leibniz notation:

$$
\begin{aligned}
& u: x \longmapsto u(x) \\
& v: u \longmapsto v(u) \\
& \frac{d v}{d x}=\frac{d v}{d u} \cdot \frac{d u}{d x}
\end{aligned}
$$

Examples:

1) Find the derivative of $F(x)=\sin (2 x+1)$.

Step 1: Write F as a composition:

$$
\begin{aligned}
F=f \circ g \quad \text { where } \quad f(x) & =\sin (x) \\
g(x) & =2 x+1
\end{aligned}
$$

Step 2: Differentiate f and g :

$$
\begin{aligned}
& f^{\prime}(x)=\cos (x) \\
& g^{\prime}(x)=2
\end{aligned}
$$

Step 3: $F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$

$$
F^{\prime}(x)=\cos (g(x)) \cdot(2)=2 \cos (2 x+1)
$$

2) Find the derivative of $G(x)=\sqrt{\left(x^{3}+x^{2}+1\right)^{3}}$

The Chain Rule and Power Rule Combined:
Say $F(x)=(g(x))^{n}$, for some $n \in \mathbb{R}$.
Then, we may write $F=f \circ g$, where $f(x)=x^{\text {n. }}$. So $f^{\prime}(x)=n x^{n-1}$, by the Power Rule.
Hence, by the Chain Rule:

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=n(g(x))^{n-1} g^{\prime}(x)
$$

Examples: Find the derivatives of the following functions:
।)

$$
\begin{aligned}
& f(x)=\sin ^{100}(x)=(\sin (x))^{100} \\
& f^{\prime}(x)=100(\sin (x))^{99} \cdot \cos (x)
\end{aligned}
$$

2) $h(x)=(x+1)^{2} \sin (x)$ (This requires another rule)
3) $K(x)=\frac{\left(x^{3}+1\right)^{100}}{x^{2}+2 x+5}$ (This requires another rule)

Iterated Chain Rule:
If h is differentiable at x, g is differentiable at $h(x)$ and f is differentiable at $g(h(x))$. then the function:

$$
G=f \circ g \circ h
$$

is differentiable at x and:

$$
G^{\prime}(x)=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

Example: Find the derivative of $F(x)=\cos \left(\sin \left(x^{2}+\pi\right)\right)$

Find the tangent line to F at $x=0$.

More Examples

Example(Old Exam Question Fall 2007) Find the derivative of

$$
h(x)=x^{2} \cos \left(\sqrt{x^{3}-1}+2\right) .
$$

Example Find the derivative of

$$
\begin{gathered}
F(x)=\frac{1}{\sqrt{x^{2}+x+1}} \\
F(x)=\frac{1}{\sqrt{x^{2}+x+1}}=\left(x^{2}+x+1\right)^{-1 / 2}
\end{gathered}
$$

By the chain rule,

$$
F^{\prime}(x)=\frac{-1}{2}\left(x^{2}+x+1\right)^{-3 / 2}(2 x+1)=\frac{-(2 x+1)}{2\left(x^{2}+x+1\right)^{3 / 2}} .
$$

Example Find the derivative of $L(x)=\sqrt{\frac{x-1}{x+2}}$.
Here we use the chain rule followed by the quotient rule. We have

$$
L(x)=\sqrt{\frac{x-1}{x+2}}=\left(\frac{x-1}{x+2}\right)^{1 / 2} .
$$

Using the chain rule, we get

$$
L^{\prime}(x)=\frac{1}{2}\left(\frac{x-1}{x+2}\right)^{-1 / 2} \frac{d}{d x}\left(\frac{x-1}{x+2}\right) .
$$

Using the quotient rule for the derivative on the right, we get

$$
L^{\prime}(x)=\frac{1}{2}\left(\frac{x-1}{x+2}\right)^{-1 / 2}\left[\frac{(x+2)-(x-1)}{(x+2)^{2}}\right]=\frac{1}{2}\left(\frac{x-1}{x+2}\right)^{-1 / 2}\left[\frac{3}{(x+2)^{2}}\right] .
$$

Example wherever it exists

$$
f(x)=\sqrt{\cos ^{2}(2 x)}
$$

Find $f^{\prime}(\boldsymbol{x})$. (Note that this is an interesting function, in fact $f(x)=|\cos (2 x)|$ which you can graph by sketching the graph of $\cos (2 x)$ and then flipping the negative parts over the x -axis. Note that the graph has many sharp points.

Using the chain rule with the chain
$y=f(x)=\sqrt{\cos ^{2}(2 x)}=\sqrt{u}, \quad u=\cos ^{2}(2 x)=(v)^{2}, \quad v=\cos (2 x)=\cos (w), \quad w=2 x$, we get

$$
\begin{gathered}
f^{\prime}(x)=\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d w} \cdot \frac{d w}{d x}=\frac{1}{2} u^{-1 / 2} \cdot 2 v \cdot[-\sin (w)] \cdot 2= \\
\frac{1}{2 \sqrt{\cos ^{2}(2 x)}} \cdot 2 \cos (2 x) \cdot[-\sin (2 x)] \cdot 2=\frac{-2 \cos (2 x) \sin (2 x)}{\sqrt{\cos ^{2}(2 x)}}
\end{gathered}
$$

