§ 5. Continuity of Functions:

Definition: A function
$$f: \mathbb{R} \to \mathbb{R}$$
 is continuous at
 $a \in \mathbb{R}$ if:

Lim $f(x) = f(a)$
 $x \to a$

Translation:
Lim $f(x) = f(a)$
 $x \to a$

"where the outputs
Look to be
going towards as
inputs go to a"

1

Note: From both sides!

- Remark: For f to be continuous at a, we must have:
 - 1) f(a) is defined.
 - 2) lim f(x) exists x->a

3) $\lim_{x \to a} f(x) = f(a)$ $x \to a$ Need both sides! Definition: If a function fis defined near a, we say f is discontinuous at a if f is not continuous at a.

<u>Remark</u>: There are many ways this can happen. Refer back to remark on page I.

Example 2 Consider the graph shown below of the function

$$k(x) = \begin{cases} x^2 & -\infty < x < 3\\ x & 3 \le x < 5\\ 0 & x = 5\\ x & 5 < x \le 7\\ \frac{1}{x-10} & x > 7 \end{cases}$$

Where is the function discontinuous and why?

Use this space to answer the example.

Definitions:

1) We say I has a removable discontinuity at a if $\lim_{x \to a} f(x)$ exists but is not equal to f(a). 2) If I has a vertical asymptote at a, we Say f has an infinite discontinuity. 3) We say f has a jump discontinuity if $\lim_{x \to a^{-1}} f(x) \quad \text{and} \quad \lim_{x \to a^{-1}} f(x) \quad \text{exist}, \text{ but are}$ not equal.

4.

(i.e., the graph "jumps").

Definitions:

A function f is <u>continuous from the right</u> at a number a if
 lim f(x) = f(a)
 x→a⁺

 A function f is <u>continuous from the left</u> at a number a if
 lim f(x) = f(a)
 x→a⁻

Example 3 Consider the function k(x) in example 2 above. At which of the following x-values is k(x) continuous from the right?

$$x = 0, \quad x = 3, \quad x = 5, \quad x = 7, \quad x = 10.$$

At which of the above x-values is k(x) continuous from the left?

Example Consider the function k(x) in example 2 above. (a) On which of the following intervals is k(x) continuous?

$$(-\infty, 0], (-\infty, 3), [3, 7].$$

(b) Fill in the missing endpoints and brackets which give the largest intervals on which k(x) is continuous.

$$(-\infty,$$
 (5,

6.

Example Let

$$m(x) = \begin{cases} cx^2 + 1 & x \ge 2\\ 10 - x & x < 2 \end{cases}$$

For which value of c is m(x) a continuous function?

1) Polynomials are continuous on all of TR (at all numbers).

Catalogue of Continuous Functions:

7.

- 2) Rational functions $(f(x) = \frac{P(x)}{Q(x)})$ are continuous everywhere they are defined (i.e. at all points where $Q(x) \neq 0$.
- 3) Root functions $(f(x) = \sqrt[4]{x^{\prime}})$ are continuous everywhere they are defined (rie. if n is even, they are continuous on [0,00) if n is odd, they are continuous on all of TR (at all numbers)).

1) Trigonometric Functions are continuous on all of
their domains.
e.g. sin and cos are continuous on all of
$$R$$
.
tan is continuous everywhere it is defined
(*i.e.* all points where $\cos(x) \neq 0$)

 -2π $-3\pi/2$ $-\pi$ $-\pi/2$ 0 $\pi/2$ π $3\pi/2$ 2π

Combinations of Continuous Functions:

Theorem:	Ef	f	and g	are	conti	nuous	at	a	
and c									
1) f + g		is	continu	ous	at	٩			
2) f - g		is	continu	ous	at	a			
3) cf		is	continuo	LS	at	a			
4) Ig		ìs	continuo	us	at	٩			
5) f		cont		t	۵	;f	a(a)	≠ ∩	

Remark: Using the above results, we now know that combinations of Polynomial, Rational, Root and Trigonometric functions using +,-,.,.; are continuous on their domains.

Examples: Write down the domains of the functions described by the following algebraic representations and justify why they are continuous on their domains:

1)
$$g(x) = \frac{(x^2 + 3)^3}{x - 10}$$

Solution: $g: \mathbb{R} \setminus \{10\} = (-\infty, 10) \cup (10, m) \longrightarrow \mathbb{T}$

2)
$$K(x) = \sqrt[3]{x'} \left(\frac{x^2 - 3}{x^2 + 1} \right) - \frac{1}{x - 27}$$

Example: Removable Discontinuity Recall that last day we found $\lim_{x\to 0} x^2 \sin(1/x)$ using the squeeze theorem. What is the limit?

Does the function

$$n(x) = \begin{cases} x^2 \sin(1/x) & x > 0\\ x^2 \sin(1/x) & x < 0 \end{cases}$$

have a removable discontinuity at zero?

(in other words can I define the function to have a value at x = 0 making a continuous function?)

$$n_1(x) = \begin{cases} x^2 \sin(1/x) & x > 0\\ ? & x = 0\\ x^2 \sin(1/x) & x < 0 \end{cases}$$

Composing Continuous Functions:

Theorem: If g is continuous at a, and f is continuous at g(a), then their composition $(f \circ g)(x) := f(g(x))$ is continuous at a:

$$\lim_{X \to a} (f \circ g)(x) = (f \circ g)(a)$$

i.e.

$$\lim_{x \to a} f(g(x)) = f(g(a))$$

Example: Evaluate the following limit:

$$\lim_{x \to 0} \operatorname{Sin}\left(\frac{x^2 + \pi}{x^4 + 1}\right)$$
(a) What is the domain of the function described by

$$h(x) = \operatorname{Sin}\left(\frac{x^2 + \pi}{x^4 + 1}\right)$$

13.

(b) where is h continuous?

÷

Theorem: (Intermediate Value Theorem) Suppose that f is continuous on [a,b] and let r be any number between f(a) and f(b). Then there exists $C \in (a,b)$ $(a \land c \land b)$ such that f(c) = r.

14.

Translation: If at
$$x = a$$
, we are at height Hz
(rie. $f(a) = Hz$) and at $x = b$, we are at
height Hz (rie. $f(b) = Hz$) we must move
through all heights between H, and Hz as
our inputs move from

a to b.

Remark: This corresponds to the graph of the function "being drawn without lifting the per from the paper" or "having no holes or gaps".

15.

Examples:

1) Show x2-3 has a root between 0 and 2.

2) Show
$$\cos(x) = x^2$$
 has a solution.

Hint: (onsider
$$h(x) = cos(x) - x^2$$

Extra Examples, Please attempt the following problems before looking at the solutions Example Which of the following functions are continuous on the interval $(0, \infty)$:

$$f(x) = \frac{x^3 + x - 1}{x + 2}, \qquad g(x) = \frac{x^2 + 3}{\cos x}, \qquad h(x) = \frac{\sqrt{x^2 + 1}}{x - 2}, \qquad k(x) = |\sin x|.$$

Example Which of the following functions have a removable discontinuity at x = 2?:

$$f(x) = \frac{x^3 + x - 1}{x - 2}, \qquad g(x) = \frac{x^2 - 4}{x - 2}, \qquad h(x) = \frac{\sqrt{x^2 + 1}}{x - 2}.$$

Example Find the domain of the following function and use Theorems 1, 2 and 3 to show that it is continuous on its domain:

$$k(x) = \frac{\sqrt[3]{\cos x}}{x - 10}.$$

Example Evaluate the following limits:

$$\lim_{x \to \pi} \sqrt[3]{2 + \cos x} \qquad \qquad \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sqrt[3]{\sin x}}{x - \frac{\pi}{2}}$$

Example What is the domain of the following function and what are the (largest) intervals on which it is continuous?

$$g(x) = \frac{1}{\sqrt{1 - \sqrt{x}}}.$$

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\sqrt[3]{x} = 1 - x$$
 (0,1).

Solutions

Example Which of the following functions are continuous on the interval $(0, \infty)$:

$$f(x) = \frac{x^3 + x - 1}{x + 2}, \qquad g(x) = \frac{x^2 + 3}{\cos x}, \qquad h(x) = \frac{\sqrt{x^2 + 1}}{x - 2}, \qquad k(x) = |\sin x|.$$

Since f(x) is a rational function, it is continuous everywhere except at x = -2, Therefore it is continuous on the interval $(0, \infty)$.

By Theorem 2 and the continuity of polynomials and trigonometric functions, g(x) is continuous except where $\cos x = 0$. Since $\cos x = 0$ for $x = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots$, we have g(x) is not continuous on $(0, \infty)$.

By theorems 2 and 3, h(x) is continuous everywhere except at x = 2. In fact x = 2 is not in the domain of this function. Hence the function is not continuous on the interval $(0, \infty)$.

Since $k(x) = |\sin x| = F(G(x))$, where $G(x) = \sin x$ and F(x) = |x|, we have that k(x) is continuous everywhere on its domain since both F and G are both continuous everywhere on their domains. Its not difficult to see that the domain of k is all real numbers, hence k is continuous everywhere. (What does its graph look like?)

Example Which of the following functions have a removable discontinuity at x = 2?:

$$f(x) = \frac{x^3 + x - 1}{x - 2}, \qquad g(x) = \frac{x^2 - 4}{x - 2}, \qquad h(x) = \frac{\sqrt{x^2 + 1}}{x - 2}.$$

 $\lim_{x\to 2} f(x)$ does not exist, since $\lim x \to 2(x^3 + x - 1) = 9$ and $\lim x \to 2(x - 2) = 0$. Therefore the discontinuity is not removable.

 $\lim_{x\to 2} g(x) = \lim_{x\to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x\to 2} (x+2) = 4$. Therefore the discontinuity at x = 2 is removable by defining a piecewise function:

$$g_1(x) = \begin{cases} g(x) & x \neq 2\\ 4 & x = 2 \end{cases}$$

 $\lim_{x\to 2} h(x)$ does not exist, since $\lim_{x\to 2} (\sqrt{x^2+1}) = \sqrt{5}$ and $\lim x \to 2(x-2) = 0$. Therefore the discontinuity is not removable.

Example Find the domain of the following function and use Theorems 1, 2 and 3 to show that it is continuous on its domain:

$$k(x) = \frac{\sqrt[3]{\cos x}}{x - 10}.$$

The domain of this function is all values of x except x = 10, since $\cos x$ is defined everywhere as is the cubed root function. Theorem 1 says that the cosine function is continuous everywhere and theorem 3 says that $f(x) = \sqrt[3]{\cos x}$ is continuous for all real numbers since the cubed root function is continuous everywhere. Now we see from Theorem 2 that $k(x) = \frac{f(x)}{g(x)}$ is continuous everywhere except where g(x) = x - 10 = 0, that is at x = 10.

Example Evaluate the following limits:

$$\lim_{x \to \pi} \sqrt[3]{2 + \cos x} \qquad \qquad \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sqrt[3]{\sin x}}{x - \frac{\pi}{2}}$$

Since $G(x) = 2 + \cos x$ and $F(x) = \sqrt[3]{x}$ are continuous everywhere, we have F(Gx) is continuous on its domain and we can calculate the first limit by evaluation:

$$\lim_{x \to \pi} \sqrt[3]{2 + \cos x} = \sqrt[3]{2 + \cos \pi} = \sqrt[3]{2 - 1} = 1.$$

As above, we have $\sqrt[3]{\sin x}$ is continuous on its domain, therefore $\lim_{x \to \frac{\pi}{2}} \sqrt[3]{\sin x} = \sqrt[3]{\sin \frac{\pi}{2}} = 1$. Since $\lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) = 0$, we have $\frac{\sqrt[3]{\sin x}}{x - \frac{\pi}{2}}$ approaches ∞ in absolute value as x approaches $\frac{\pi}{2}$. As $x \to \frac{\pi}{2}^-$, $\sin(x) > 0$, hence $\sqrt[3]{\sin x} > 0$. As $x \to \frac{\pi}{2}^-$, $x - \frac{\pi}{2} < 0$, therefore the quotient has negative values and

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{\sqrt[3]{\sin x}}{x - \frac{\pi}{2}} = -\infty.$$

Example What is the domain of the following function and what are the (largest) intervals on which it is continuous?

$$g(x) = \frac{1}{\sqrt{1 - \sqrt{x}}}.$$

The domain of this function is all x where $\sqrt{1-\sqrt{x}} \neq 0$, i.e. all x where $x \neq 1$. By theorems 3 and 2, the function is continuous everywhere on its domain, therefore it is continuous on the intervals $(-\infty, 1)$ and $(1, \infty)$.

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\sqrt[3]{x} = 1 - x$$
 (0, 1).

Let $g(x) = \sqrt[3]{x} - 1 + x$. We have g(0) = -1 < 0 and g(1) = 1 > 0. therefore by the intermediate value theorem, there is some number c with 0 < c < 1 for which g(c) = 0. That is

$$\sqrt[3]{c} = 1 - c$$

as desired.

