§ 4. Laws of Limits:
The following theorem, in some sense, shows us that limits behave how we expect them to:

Theorem: Say $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist (ie. they are finite numbers), and $c \in \mathbb{R}$ is a constant. Then:

1) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
("Limit of sum $=$ Sum of (limits")
2)

$$
\begin{aligned}
& \lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x) \\
& (\text { "Limit of difference }=\text { Difference of limits") }
\end{aligned}
$$

3) $\left[\lim _{x \rightarrow a}(f(x) g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)\right.$

$$
\text { ("Limit of product }=\text { Product of Limits") }
$$

4) $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
("You can pull constants past limits.")
5) If $\lim _{x \rightarrow a} g(x) \neq 0$, then:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}
$$

$$
\text { ("limit of a quotient }=\text { Quotient of limits".) }
$$

Example If I am given that

$$
\lim _{x \rightarrow 2} f(x)=2, \quad \lim _{x \rightarrow 2} g(x)=5, \quad \lim _{x \rightarrow 2} h(x)=0 .
$$

find the limits that exist (are a finite number):
(a) $\lim _{x \rightarrow 2} \frac{2 f(x)+h(x)}{g(x)}$
(b) $\lim _{x \rightarrow 2} \frac{f(x)}{h(x)}$
(c) $\lim _{x \rightarrow 2} \frac{f(x) h(x)}{g(x)}$
(a) As $\lim _{x \rightarrow 2} g(x)=5 \neq 0$, then:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{2 f(x)+h(x)}{g(x)}=\lim _{x \rightarrow 2}\left(\frac{2 f(x)}{g(x)}+\frac{h(x)}{g(x)}\right) \\
&=\lim _{x \rightarrow 2} \frac{2 f(x)}{g(x)}+\lim _{x \rightarrow 2} \frac{h(x)}{g(x)} \\
&=\frac{2 \lim _{x \rightarrow 2} f(x)}{\lim _{x \rightarrow 2} g(x)}+\frac{\lim _{x \rightarrow 2} h(x)}{\lim _{x \rightarrow 2} g(x)} \\
&=\frac{2(2)}{5} \\
&=\frac{4}{2}
\end{aligned}
$$

(b)
(C)

Remark: If $\lim _{x \rightarrow a} g(x)=0$ and $\lim _{x \rightarrow a} f(x)=b$, where b is finite and $b \neq 0$, then we can make the size (absolute value) of $\frac{f(x)}{g(x)}$ arbitrarily large by taking x close to a. Hence, the $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist (DNE).

1) If $\frac{f(x)}{g(x)}$ is always positive for x sufficiently close to a, then: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\infty$
2) If $\frac{f(x)}{g(x)}$ is always negative for x sufficiently close to a, then: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=-\infty$
3) If neither of the above is the case, we just say $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist (DNE).

Examples: 1) $\lim _{x \rightarrow 0} x=0, \quad \lim _{x \rightarrow 0} 1=1$, $\lim _{x \rightarrow 0} \frac{1}{x}$ DUE.
2) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=$

More powerful laws of limits can be derived using the above laws 1-5 and our knowledge of some basic functions. The following can be proven reasonably easily (we are still assuming that c is a constant and $\lim _{x \rightarrow a} f(x)$ exists);
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$, where n is a positive integer (we see this using rule 4 repeatedly).
7. $\lim _{x \rightarrow a} c=c$, where c is a constant (easy to prove from definition of limit and easy to see from the graph, $y=c$).
8. $\lim _{x \rightarrow a} x=a$, (follows easily from the definition of limit)
9. $\lim _{x \rightarrow a} x^{n}=a^{n}$ where n is a positive integer (this follows from rules 6 and 8).
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$, where n is a positive integer and $a>0$ if n is even. (proof needs a little extra work and the binomial theorem)
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ assuming that the $\lim _{x \rightarrow a} f(x)>0$ if n is even. (We will look at this in more detail when we get to continuity)

Example Evaluate the following limits and justify each step:
(a) $\lim _{x \rightarrow 3} \frac{x^{3}+2 x^{2}-x+1}{x-1}$
(b) $\quad \lim _{x \rightarrow 1} \sqrt[3]{x+1}$

Limits of Polynomials and Rational Functions:

- Direct Substitution Property: If f is a polynomial or rational function and a is in the domain of f, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

$N B$
If f is a rational function with $f(x)=\frac{P(x)}{Q(x)}$, where P and Q are polynomials with $Q(a)=0$, then we must use algebra to attempt to find the limit (i.e. factorise, etc.).

Example Determine if the following limits are finite, equal to $\pm \infty$ or D.N.E. and are not equal to $\pm \infty$:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$.
(b) $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-x-6}{x-1}$.
(c) Which of the following is true:

1. $\lim _{x \rightarrow 1} \frac{x^{2}-x-6}{x-1}=+\infty, \quad$ 2. $\lim _{x \rightarrow 1} \frac{x^{2}-x-6}{x-1}=-\infty$,
2. $\lim _{x \rightarrow 1} \frac{x^{2}-x-6}{x-1}$ D.N.E. and is not $\pm \infty$,

Example Evaluate the limit (finish the calculation)

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}
$$

Example Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+25}-5}{x^{2}}
$$

Recall also our observation from the last day which can be proven rigorously from the definition (this is good to keep in mind when dealing with piecewise defined functions):

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

Example Evaluate the limit if it exists:

$$
\lim _{x \rightarrow-2} \frac{3 x+6}{|x+2|}
$$

The following theorems help us calculate some important limits by comparing the behavior of a function with that of other functions for which we can calculate limits:

Theorem: If $f(x) \leq g(x)$ for x sufficiently close to a (not necessarily at a), and $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then:

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Picture:

Theorem: (Squeeze Theorem)
If $f(x) \leqslant g(x) \leqslant h(x)$ for x sufficiently close to a (but not necessarily at a) and

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Picture:

Example: Calculate $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$. Hint: $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ for all $x \neq 0$.

Example Decide if the following limit exists and if so find its values:

$$
\lim _{x \rightarrow o} x^{100} \cos ^{2}(\pi / x)
$$

Extra Examples, attempt the problems before looking at the solutions

Decide if the following limits exist and if a limit exists, find its value.
(1) $\lim _{x \rightarrow 1} x^{4}+2 x^{3}+x^{2}+3$
(2) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{(x-2)^{2}}$.
(3) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$.
(4) $\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}$.
(5) $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$.
(6) If $2 x \leq g(x) \leq x^{2}-x+2$ for all x, evaluate $\lim _{x \rightarrow 1} g(x)$.
(7) Determine if the following limit is finite, $\pm \infty$ or D.N.E. and is not $\pm \infty$.

$$
\lim _{x \rightarrow 1^{-}} \frac{(x-3)(x+2)}{(x-1)(x-2)}
$$

Extra Examples, attempt the problems before looking at the solutions

Decide if the following limits exist and if a limit exists, find its value.
(1) $\lim _{x \rightarrow 1} x^{4}+2 x^{3}+x^{2}+3$

Since this is a polynomial function, we can calculate the limit by direct substitution:

$$
\lim _{x \rightarrow 1} x^{4}+2 x^{3}+x^{2}+3=1^{4}+2(1)^{3}+1^{2}+3=7
$$

(2) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{(x-2)^{2}}$.

This is a rational function, where both numerator and denominator approach 0 as x approaches 2. We factor the numerator to get

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{(x-2)^{2}}=\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{(x-2)^{2}}
$$

After cancellation, we get

$$
\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{(x-2)^{2}}=\lim _{x \rightarrow 2} \frac{(x-1)}{(x-2)}
$$

Now this is a rational function where the numerator approaches 1 as $x \rightarrow 2$ and the denominator approaches 0 as $x \rightarrow 2$. Therefore

$$
\lim _{x \rightarrow 2} \frac{(x-1)}{(x-2)}
$$

does not exist.
We can analyze this limit a little further, by checking out the left and right hand limits at 2. As x approaches 2 from the left, the values of $(x-1)$ are positive (approaching a constant 1) and the values of $(x-2)$ are negative (approaching 0). Therefore the values of $\frac{(x-1)}{(x-2)}$ are negative and become very large in absolute value. Therefore

$$
\lim _{x \rightarrow 2^{-}} \frac{(x-1)}{(x-2)}=-\infty
$$

Similarly, you can show that

$$
\lim _{x \rightarrow 2^{-}} \frac{(x-1)}{(x-2)}=+\infty
$$

and therefore the graph of $y=\frac{(x-1)}{(x-2)}$ has a vertical asymptote at $x=2$.
(check it out on your calculator)
(3) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$.

Let $f(x)=\frac{1}{x}-\frac{1}{|x|}$. We write this function as a piecewise defined function:

$$
f(x)= \begin{cases}\frac{1}{x}-\frac{1}{x}=0 & x>0 \\ \frac{1}{x}+\frac{1}{x}=\frac{2}{x} & x \leq 0\end{cases}
$$

$\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$ exists only if the left and right hand limits exist and are equal.
$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=\lim _{x \rightarrow 0^{+}} 0=0$ and $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=\lim _{x \rightarrow 0^{-}} \frac{2}{x}=-\infty$.
Since the limits do not match, we have

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right) \text { D.N.E. }
$$

(4) $\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}$.

Since $\lim _{x \rightarrow 0} x^{2}+x+10=10 \neq 0$, we have

$$
\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}=\frac{\lim _{x \rightarrow 0}|x|}{\lim _{x \rightarrow 0}\left(x^{2}+x+10\right)}=\frac{\lim _{x \rightarrow 0}|x|}{10} .
$$

Now

$$
|x|=\left\{\begin{array}{cc}
x & x>0 \\
-x & x \leq 0
\end{array} .\right.
$$

Clearly $\lim _{x \rightarrow 0^{+}}|x|=0=\lim _{x \rightarrow 0^{-}}|x|$. Hence $\lim _{x \rightarrow 0}|x|=0$ and

$$
\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}=\frac{\lim _{x \rightarrow 0}|x|}{10}=\frac{0}{10}=0 .
$$

(5) $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$.

Since $\lim _{h \rightarrow 0} \sqrt{4+h}-2=0=\lim _{h \rightarrow 0} h$, we cannot determine whether this limit exists or not from the limit laws without some transformation. We have

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{4+h}-2)(\sqrt{4+h}+2)}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{\left.(\sqrt{4+h})^{2}-4\right)}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{(4+h)-4}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{1}{(\sqrt{4+h}+2)}=\frac{1}{4}
\end{aligned}
$$

(6) If $2 x \leq g(x) \leq x^{2}-x+2$ for all x, evaluate $\lim _{x \rightarrow 1} g(x)$.

We use the Sandwich theorem here. Since $2 x \leq g(x) \leq x^{2}-x+2$, we have

$$
\lim _{x \rightarrow 1} 2 x \leq \lim _{x \rightarrow 1} g(x) \leq \lim _{x \rightarrow 1}\left(x^{2}-x+2\right)
$$

therefore

$$
2 \leq \lim _{x \rightarrow 1} g(x) \leq 2
$$

and hence

$$
\lim _{x \rightarrow 1} g(x)=2 .
$$

(7) Determine if the following limit is finite, $\pm \infty$ or D.N.E. and is not $\pm \infty$.

$$
\lim _{x \rightarrow 1^{-}} \frac{(x-3)(x+2)}{(x-1)(x-2)}
$$

Let $P(x)=(x-3)(x+2)$ and $Q(x)=(x-1)(x-2)$. We have $P(1)=-6 \neq 0$ and $Q(1)=0$. Therefore the values of $\frac{P(x)}{Q(x)}=\frac{(x-3)(x+2)}{(x-1)(x-2)}$ get larger in absolute value as x approaches 1 .
As x approaches 1 from the left, $(x-3)<0, \quad(x-2)<0, \quad(x-1)<0$, and $(x+2)>0$, therefore the quotient $\frac{(x-3)(x+2)}{(x-1)(x-2)}<0$ as x approaches 1 from the left and therefore

$$
\lim _{x \rightarrow 1^{-}} \frac{(x-3)(x+2)}{(x-1)(x-2)}=-\infty
$$

